Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38920653

RESUMO

Uveal melanoma (UM), a distinct subtype of melanoma, presents unique challenges in its clinical management due to its complex molecular landscape and tendency for liver metastasis. This review highlights recent advancements in understanding the molecular pathogenesis, genetic alterations, and immune microenvironment of UM, with a focus on pivotal genes, such as GNAQ/11, BAP1, and CYSLTR2, and delves into the distinctive genetic and chromosomal classifications of UM, emphasizing the role of mutations and chromosomal rearrangements in disease progression and metastatic risk. Novel diagnostic biomarkers, including circulating tumor cells, DNA and extracellular vesicles, are discussed, offering potential non-invasive approaches for early detection and monitoring. It also explores emerging prognostic markers and their implications for patient stratification and personalized treatment strategies. Therapeutic approaches, including histone deacetylase inhibitors, MAPK pathway inhibitors, and emerging trends and concepts like CAR T-cell therapy, are evaluated for their efficacy in UM treatment. This review identifies challenges in UM research, such as the limited treatment options for metastatic UM and the need for improved prognostic tools, and suggests future directions, including the discovery of novel therapeutic targets, immunotherapeutic strategies, and advanced drug delivery systems. The review concludes by emphasizing the importance of continued research and innovation in addressing the unique challenges of UM to improve patient outcomes and develop more effective treatment strategies.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Neoplasias Uveais/genética , Neoplasias Uveais/terapia , Neoplasias Uveais/patologia , Neoplasias Uveais/diagnóstico , Melanoma/genética , Melanoma/terapia , Melanoma/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral/genética , Mutação/genética
2.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685987

RESUMO

Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.


Assuntos
Clusterina , Oftalmopatias , Neoplasias , Animais , Humanos , Masculino , Comunicação Celular , Clusterina/genética , Oftalmopatias/genética , Neoplasias/genética , Sêmen , Ovinos , Cicatrização
3.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768144

RESUMO

In our experience, keratinocytes cultured in feeder-free conditions and in commercially available defined and serum-free media cannot be as efficiently massively expanded as their counterparts grown in conventional bovine serum-containing medium, nor can they properly form a stratified epidermis in a skin substitute model. We thus tested a new chemically defined serum-free medium, which we developed for massive human primary keratinocyte expansion and skin substitute production. Our medium, named Surge Serum-Free Medium (Surge SFM), was developed to be used alongside a feeder layer. It supports the growth of keratinocytes freshly isolated from a skin biopsy and cryopreserved primary keratinocytes in cultured monolayers over multiple passages. We also show that keratin-19-positive epithelial stem cells are retained through serial passaging in Surge SFM cultures. Transcriptomic analyses suggest that gene expression is similar between keratinocytes cultured with either Surge SFM or the conventional serum-containing medium. Additionally, Surge SFM can be used to produce bilayered self-assembled skin substitutes histologically similar to those produced using serum-containing medium. Furthermore, these substitutes were grafted onto athymic mice and persisted for up to six months. In conclusion, our new chemically defined serum-free keratinocyte culture medium shows great promise for basic research and clinical applications.


Assuntos
Queratinócitos , Engenharia Tecidual , Animais , Camundongos , Humanos , Queratinócitos/metabolismo , Pele/metabolismo , Epiderme/metabolismo , Células Epidérmicas , Meios de Cultura Livres de Soro/farmacologia , Células Cultivadas
4.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293057

RESUMO

Corneal wound healing involves communication between the different cell types that constitute the three cellular layers of the cornea (epithelium, stroma and endothelium), a process ensured in part by a category of extracellular vesicles called exosomes. In the present study, we isolated exosomes released by primary cultured human corneal epithelial cells (hCECs), corneal fibroblasts (hCFs) and corneal endothelial cells (hCEnCs) and determined whether they have wound healing characteristics of their own and to which point they modify the genetic and proteomic pattern of these cell types. Exosomes released by all three cell types significantly accelerated wound closure of scratch-wounded hCECs in vitro compared to controls (without exosomes). Profiling of activated kinases revealed that exosomes from human corneal cells caused the activation of signal transduction mediators that belong to the HSP27, STAT, ß-catenin, GSK-3ß and p38 pathways. Most of all, data from gene profiling analyses indicated that exosomes, irrespective of their cellular origin, alter a restricted subset of genes that are completely different between each targeted cell type (hCECs, hCFS, hCEnCs). Analysis of the genes specifically differentially regulated for a given cell-type in the microarray data using the Ingenuity Pathway Analysis (IPA) software revealed that the mean gene expression profile of hCECs cultured in the presence of exosomes would likely promote cell proliferation and migration whereas it would reduce differentiation when compared to control cells. Collectively, our findings represent a conceptual advance in understanding the mechanisms of corneal wound repair that may ultimately open new avenues for the development of novel therapeutic approaches to improve closure of corneal wounds.


Assuntos
Lesões da Córnea , Exossomos , Humanos , Exossomos/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Endoteliais/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteômica , Cicatrização/fisiologia , Córnea/metabolismo , Lesões da Córnea/metabolismo , Células Epiteliais/metabolismo , Movimento Celular
5.
Cells ; 11(17)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36078126

RESUMO

Besides being a powerful model to study the mechanisms of corneal wound healing, tissue-engineered human corneas (hTECs) are sparking interest as suitable substitutes for grafting purposes. To ensure the histological and physiological integrity of hTECs, the primary cultures generated from human cornea (identified as human limbal epithelial cells (hLECs) that are used to produce them must be of the highest possible quality. The goal of the present study consisted in evaluating the impact of the postmortem/storage time (PM/ST) on their properties in culture. hLECs were isolated from the entire cornea comprising the limbus and central cornea. When grown as monolayers, short PM/ST hLECs displayed increased daily doublings and generated more colonies per seeded cells than long PM/ST hLECs. Moreover, hLECs with a short PM/ST exhibited a markedly faster wound closure kinetic both in scratch wound assays and hTECs. Collectively, these results suggest that short PM/ST hLECs have a greater number of highly proliferative stem cells, exhibit a faster and more efficient wound healing response in vitro, and produce hTECs of a higher quality, making them the best candidates to produce biomaterial substitutes for clinical studies.


Assuntos
Córnea , Células-Tronco , Células Cultivadas , Córnea/patologia , Células Epiteliais , Humanos , Engenharia Tecidual/métodos
6.
Cells ; 11(18)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139479

RESUMO

Psoriasis is a complex, immune-mediated skin disease involving a wide range of epithelial and immune cells. The underlying mechanisms that govern the epidermal defects and immunological dysfunction observed in this condition remain largely unknown. In recent years, the emergence of new, more sophisticated models has allowed the evolution of our knowledge of the pathogenesis of psoriasis. The development of psoriatic skin biomaterials that more closely mimic native psoriatic skin provides advanced preclinical models that will prove relevant in predicting clinical outcomes. In this study, we used a tissue-engineered, two-layered (dermis and epidermis) human skin substitute enriched in T cells as a biomaterial to study both the cellular and molecular mechanisms involved in psoriasis' pathogenesis. Gene profiling on microarrays revealed significant changes in the profile of genes expressed by the psoriatic skin substitutes compared with the healthy ones. Two genes, namely, PTPRM and NELL2, whose products influence the ERK1/2 signaling pathway have been identified as being deregulated in psoriatic substitutes. Deregulation of these genes supports excessive activation of the ERK1/2 pathway in psoriatic skin substitutes. Most importantly, electrophoresis mobility shift assays provided evidence that the DNA-binding properties of two downstream nuclear targets of ERK1/2, both the NF-κB and Sp1 transcription factors, are increased under psoriatic conditions. Moreover, the results obtained with the inhibition of RSK, a downstream effector of ERK1/2, supported the therapeutic potential of inhibiting this signaling pathway for psoriasis treatment. In conclusion, this two-layered human psoriatic skin substitute enriched in T cells may prove particularly useful in deciphering the mechanistic details of psoriatic pathogenesis and provide a relevant biomaterial for the study of potential therapeutic targets.


Assuntos
Queratinócitos , Psoríase , Complexo Antígeno-Anticorpo/análise , Complexo Antígeno-Anticorpo/genética , Complexo Antígeno-Anticorpo/metabolismo , Materiais Biocompatíveis/uso terapêutico , Proliferação de Células/genética , DNA/metabolismo , Regulação para Baixo , Humanos , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Psoríase/tratamento farmacológico , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/análise , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Transdução de Sinais , Linfócitos T
7.
J Cell Physiol ; 237(5): 2434-2450, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150137

RESUMO

Due to its superficial anatomical localization, the cornea is continuously subjected to injuries. Damages to the corneal epithelium trigger important changes in the composition of the extracellular matrix to which the basal human corneal epithelial cells (hCECs) attach. These changes are perceived by membrane-bound integrins and ultimately lead to re-epithelialization of the injured epithelium through intracellular signalin. Among the many downstream targets of the integrin-activated signaling pathways, WNK1 is the kinase whose activity is the most strongly increased during corneal wound healing. We previously demonstrated that pharmacological inhibition of WNK1 prevents proper closure of wounded human tissue-engineered cornea in vitro. In the present study, we investigated the molecular mechanisms by which WNK1 contributes to corneal wound healing. By exploiting transcription factors microarrays, electrophoretic mobility-shift assay, and gene profiling analyses, we demonstrated that the DNA binding properties and expression of numerous transcription factors (TFs), including the well-known, ubiquitous TFs specific protein 1 (Sp1) and activator protein 1 (AP1), were reduced in hCECs upon WNK1 inhibition by WNK463. This process appears to be mediated at least in part by alteration in both the ubiquitination and glycosylation status of these TFs. These changes in TFs activity and expression impacted the transcription of several genes, including that encoding the α5 integrin subunit, a well-known target of both Sp1 and AP1. Gene profiling revealed that only a moderate number of genes in hCECs had their level of expression significantly altered in response to WNK463 exposition. Interestingly, analysis of the microarray data for these deregulated genes using the ingenuity pathway analysis software predicted that hCECs would stop migrating and proliferating but differentiate more when they are grown in the presence of the WNK1 inhibitor. These results demonstrate that WNK1 plays a critical function by orienting hCECs into the appropriate biological response during the process of corneal wound healing.


Assuntos
Lesões da Córnea , Epitélio Corneano , Lesões da Córnea/metabolismo , Células Epiteliais/metabolismo , Epitélio Corneano/metabolismo , Humanos , Fator de Transcrição AP-1/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Cicatrização/genética
8.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163491

RESUMO

Uveal melanoma (UM) remains the most common intraocular malignancy among diseases affecting the adult eye. The primary tumor disseminates to the liver in half of patients and leads to a 6 to 12-month survival rate, making UM a particularly aggressive type of cancer. Genomic analyses have led to the development of gene-expression profiles that can efficiently predict metastatic progression. Among these genes, that encoding the serotonin receptor 2B (HTR2B) represents the most discriminant from this molecular signature, its aberrant expression being the hallmark of UM metastatic progression. Recent evidence suggests that expression of HTR2B might be regulated through the Janus kinase/Signal Transducer and Activator of Transcription proteins (JAK/STAT) intracellular signalization pathway. However, little is actually known about the molecular mechanisms involved in the abnormally elevated expression of the HTR2B gene in metastatic UM and whether activated STAT proteins participates to this mechanism. In this study, we determined the pattern of STAT family members expressed in both primary tumors and UM cell-lines, and evaluated their contribution to HTR2B gene expression. Examination of the HTR2B promoter sequence revealed the presence of a STAT putative target site (5'-TTC (N)3 GAA3') located 280 bp upstream of the mRNA start site that is completely identical to the high affinity binding site recognized by these TFs. Gene profiling on microarrays provided evidence that metastatic UM cell lines with high levels of HTR2B also express high levels of STAT proteins whereas low levels of these TFs are observed in non-metastatic UM cells with low levels of HTR2B, suggesting that STAT proteins contribute to HTR2B gene expression in UM cells. All UM cell lines tested were found to express their own pattern of STAT proteins in Western blot analyses. Furthermore, T142 and T143 UM cells responded to interleukins IL-4 and IL-6 by increasing the phosphorylation status of STAT1. Most of all, expression of HTR2B also considerably increased in response to both IL-4 and IL-6 therefore providing evidence that HTR2B gene expression is modulated by STAT proteins in UM cells. The binding of STAT proteins to the -280 HTR2B/STAT site was also demonstrated by electrophoretic mobility shift assay (EMSA) analyses and site-directed mutation of that STAT site also abolished both IL-4 and IL-6 responsiveness in in vitro transfection analyses. The results of this study therefore demonstrate that members from the STAT family of TFs positively contribute to the expression of HTR2B in uveal melanoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Receptor 5-HT2B de Serotonina/genética , Fatores de Transcrição STAT/metabolismo , Neoplasias Uveais/metabolismo , Região 5'-Flanqueadora/genética , Linhagem Celular Tumoral , DNA/metabolismo , Humanos , Interleucina-4/farmacologia , Interleucina-6/farmacologia , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Fatores de Transcrição STAT/genética
9.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830308

RESUMO

In order to reduce the need for donor corneas, understanding of corneal wound healing and development of an entirely tissue-engineered human cornea (hTECs) is of prime importance. In this study, we exploited the hTEC to determine how deep wound healing affects the transcriptional pattern of corneal epithelial cells through microarray analyses. We demonstrated that the gene encoding clusterin (CLU) has its expression dramatically repressed during closure of hTEC wounds. Western blot analyses confirmed a strong reduction in the expression of the clusterin isoforms after corneal damage and suggest that repression of CLU gene expression might be a prerequisite to hTEC wound closure. Transfection with segments from the human CLU gene promoter revealed the presence of three regulatory regions: a basal promoter and two more distal negative regulatory regions. The basal promoter bears DNA binding sites for very potent transcription factors (TFs): Activator Protein-1 (AP-1) and Specificity protein-1 and 3 (Sp1/Sp3). By exploiting electrophoretic mobility shift assays (EMSA), we demonstrated that AP-1 and Sp1/Sp3 have their DNA binding site overlapping with one another in the basal promoter of the CLU gene in hCECs. Interestingly, expression of both these TFs is reduced (at the protein level) during hTEC wound healing, thereby contributing to the extinction of CLU gene expression during that process. The results of this study contribute to a better understanding of the molecular mechanisms accounting for the repression of CLU gene expression during corneal wound healing.


Assuntos
Clusterina/genética , Células Epiteliais/metabolismo , Epitélio Corneano/citologia , Expressão Gênica , Transdução de Sinais/genética , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Engenharia Tecidual/métodos , Fator de Transcrição AP-1/metabolismo , Cicatrização/genética , Adulto , Idoso , Células Cultivadas , Criança , Clusterina/metabolismo , Epitélio Corneano/metabolismo , Fibroblastos/metabolismo , Humanos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Doadores de Tecidos , Transfecção
10.
Acta Biomater ; 136: 210-222, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547515

RESUMO

Psoriasis is a chronic inflammatory skin disease involving several cell types, including T cells, via the IL-23/IL-17 axis. IL-17A acts on the surrounding epithelial cells thus resulting in an inflammatory feedback loop. The development of immunocompetent models that correctly recapitulate the complex phenotype of psoriasis remains challenging, which also includes both the T cell isolation and activation methods. The purpose of this work was to develop an advanced in vitro 3D psoriatic skin model that enables the study of the impact of T cells on psoriatic epithelial cells. To reach that aim, healthy and psoriatic fibroblasts and keratinocytes were used to reproduce this tissue-engineered skin model in which activated T cells, isolated beforehand from human whole blood, have been incorporated. Our study showed that isolation of T cells with the EasySep procedure, followed by activation with PMA/ionomycin, mimicked the psoriatic characteristics in an optimal manner with the production of inflammatory cytokines important in the pathogenesis of psoriasis, as well as increased expression of Ki67, S100A7, elafin and involucrin. This psoriatic model enriched in activated T cells displayed enhanced production of IL-17A, IFN-Æ´, CCL2, CXCL10, IL-1ra, IL-6 and CXCL8 compared with the healthy model and whose increased secretion was maintained over time. In addition, anti-IL17A treatment restored some psoriatic features, including epidermal thickness and basal keratinocytes proliferation, as well as a downregulation of S100A7, elafin and involucrin expression. Altogether, our study demonstrated that this model reflects a proper psoriatic inflammatory environment and is effective for the investigation of epidermal and T cell interaction over time. STATEMENT OF SIGNIFICANCE: The aim of this study was to provide an innovative 3D immunocompetent human psoriatic skin model. To our knowledge, this is the first immunocompetent model that uses skin cells from psoriatic patients to study the impact of IL-17A on pathological cells. Through the use of this model, we demonstrated that the T-cell enriched psoriatic model differs from T-cell enriched healthy model, highlighting efficient crosstalk between pathologic epithelial cells and T cells. This advanced preclinical model further mimics the original psoriatic skin and will prove relevant in predicting clinical outcomes, thereby decreasing inaccurate predictions of compound effects.


Assuntos
Técnicas de Cultura de Células em Três Dimensões/métodos , Interleucina-17 , Queratinócitos/citologia , Psoríase , Linfócitos T/citologia , Humanos , Psoríase/imunologia , Pele
11.
J Invest Dermatol ; 141(10): 2391-2401.e13, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33857488

RESUMO

Clinical studies have shown that diets enriched with omega-3 (also know as n-3) polyunsaturated fatty acids could relieve the symptoms of patients with psoriasis. However, the mechanisms involved remain poorly understood. The aim of this study was to investigate the effects of α-linolenic acid (ALA) on the proliferation and differentiation of psoriatic keratinocytes in a three-dimensional skin model. Skin models featuring healthy (healthy substitute) or psoriatic (psoriatic substitute) cells were engineered by the self-assembly method of tissue engineering using a culture medium supplemented with 10 µM ALA in comparison with the regular unsupplemented medium. ALA decreased keratinocyte proliferation and improved psoriatic substitute epidermal differentiation, as measured by decreased Ki67 staining and increased protein expression of FLG and loricrin. The added ALA was notably incorporated into the epidermal phospholipids and metabolized into long-chain n-3 polyunsaturated fatty acids, mainly eicosapentaenoic acid and n-3 docosapentaenoic acid. ALA supplementation led to increased levels of eicosapentaenoic acid derivatives (15-hydroxyeicosapentaenoic acid and 18-hydroxyeicosapentaenoic acid) as well as a decrease in levels of omega-6 (also know as n-6) polyunsaturated fatty acid lipid mediators (9-hydroxyoctadecadienoic acid, 12-hydroxyeicosatetraenoic acid, and leukotriene B4). Furthermore, the signal transduction mediators extracellular signal‒regulated kinases 1 and 2 were the kinases most activated after ALA supplementation. Taken together, these results show that ALA decreases the pathologic phenotype of psoriatic substitutes by normalizing keratinocyte proliferation and differentiation in vitro.


Assuntos
Queratinócitos/efeitos dos fármacos , Psoríase/tratamento farmacológico , Engenharia Tecidual , Ácido alfa-Linolênico/farmacologia , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/análise , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Suplementos Nutricionais , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Queratinócitos/patologia , Leucotrieno B4/análise , Psoríase/metabolismo , Psoríase/patologia , Ácido alfa-Linolênico/administração & dosagem
12.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525484

RESUMO

Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured using one form or another of corneal transplantation, which is the most successful transplantation in humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in the development of living corneal substitutes produced by tissue engineering and designed to mimic their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the native cornea. However, studies have emerged that describe the production of tridimensional (3D) tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and expression of both extracellular matrix (ECM) components and integrins. This review highlights contributions from laboratories working on the production of human tissue-engineered corneas (hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of cadaveric corneas where cell organization is provided by the substrate, and then focuses on their 3D counterparts that are closer to the native human corneal architecture because of their tissue development and cell arrangement properties. These completely biological hTECs are therefore very promising as models that may help understand many aspects of the molecular and cellular mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in the development of novel drugs that might be promising for therapeutic purposes.


Assuntos
Córnea/citologia , Lesões da Córnea/terapia , Traumatismos Ocupacionais/terapia , Engenharia Tecidual/métodos , Transplante de Córnea , Humanos , Modelos Biológicos , Alicerces Teciduais
13.
Genes (Basel) ; 11(10)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007857

RESUMO

Psoriasis is an immune-mediated inflammatory skin disease with a complex etiology involving environmental and genetic factors. A better insight into related genomic alteration helps design precise therapies leading to better treatment outcome. Gene expression in psoriasis can provide relevant information about the altered expression of mRNA transcripts, thus giving new insights into the disease onset. Techniques for transcriptome analyses, such as microarray and RNA sequencing (RNA-seq), are relevant tools for the discovery of new biomarkers as well as new therapeutic targets. This review summarizes the findings related to the contribution of keratinocytes in the pathogenesis of psoriasis by an in-depth review of studies that have examined psoriatic transcriptomes in the past years. It also provides valuable information on reconstructed 3D psoriatic skin models using cells isolated from psoriatic patients for transcriptomic studies.


Assuntos
Queratinócitos/fisiologia , Psoríase/genética , Transcriptoma , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunidade/genética , Técnicas In Vitro , Metabolismo dos Lipídeos , Lipídeos , Masculino , Psoríase/patologia , Psoríase/fisiopatologia
14.
Methods Mol Biol ; 2145: 103-118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32542603

RESUMO

Tissue engineering is a flourishing field of regenerative medicine that allows the reconstruction of various tissues of our body, including the cornea. In addition to addressing the growing need for organ transplants, such tissue-engineered substitutes may also serve as good in vitro models for fundamental and preclinical studies. Recent progress in the field of corneal tissue engineering has led to the development of new technologies allowing the reconstruction of a human bi-lamellar cornea. One unique feature of this model is the complete absence of exogenous material. Indeed, these human corneal equivalents are exclusively composed of untransformed human corneal fibroblasts (hCFs) entangled in their own extracellular matrix, as well as untransformed human corneal epithelial cells (hCECs), both of which isolated from donor corneas. The reconstructed human bi-lamellar cornea thereby exhibits a well-organized stroma as well as a well-differentiated epithelium. This chapter describes the methods used for the isolation and culture of hCFs, the production and assembly of hCFs stromal sheets, the seeding of hCECs, and the maturation of the tissue-engineered cornea.


Assuntos
Córnea/citologia , Substância Própria/citologia , Epitélio Corneano/citologia , Engenharia Tecidual/métodos , Córnea/crescimento & desenvolvimento , Substância Própria/crescimento & desenvolvimento , Epitélio Corneano/crescimento & desenvolvimento , Matriz Extracelular/genética , Fibroblastos/citologia , Humanos
15.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847118

RESUMO

Because of the worldwide shortage of graftable corneas, alternatives to restore visual impairments, such as the production of a functional human cornea by tissue engineering, have emerged. Self-renewal of the corneal epithelium through the maintenance of a sub-population of corneal stem cells is required to maintain the functionality of such a reconstructed cornea. We previously reported an association between stem cell differentiation and the level to which they express the transcription factors Sp1 and NFI. In this study, we investigated the impact of replacing irradiated 3T3 (i3T3) murine fibroblast feeder cells by irradiated human corneal fibroblasts (iHFL) on the expression of Sp1 and NFI and evaluated their contribution to the proliferative properties of human corneal epithelial cells (hCECs) in both monolayer cultures and human tissue engineered corneas (hTECs). hCECs co-cultured with iHFL could be maintained for up to two more passages than when they were grown with i3T3. Western Blot and electrophoretic mobility shift assays (EMSAs) revealed no significant difference in the feeder-layer dependent increase in Sp1 at both the protein and DNA binding level, respectively, between HCECs grown with either i3T3 or iHFL. On the other hand, a significant increase in the expression and DNA binding of NFI was observed at each subsequent passage when hCECs were co-cultured along with i3T3. These changes were found to result from an increased expression of the NFIA and NFIB isoforms in hCECs grown with i3T3. Exposure of hCECs to cycloheximide revealed an increased stability of NFIB that likely resulted from post-translational glycosylation of this protein when these cells were co-cultured with i3T3. In addition, iHFL were as efficient as i3T3 at preserving corneal, slow-cycling, epithelial stem cells in the basal epithelium of the reconstructed hTECs. Furthermore, we observed an increased expression of genes whose encoded products promote hCECs differentiation along several passages in hCECs co-cultured with either type of feeder layer. Therefore, the iHFL feeder layer appears to be the most effective at maintaining the proliferative properties of hCECs in culture most likely by preserving high levels of Sp1 and low levels of NFIB, which is known for its gene repressor and cell differentiation properties.


Assuntos
Células Epiteliais/metabolismo , Epitélio Corneano/metabolismo , Células Alimentadoras/metabolismo , Fibroblastos/metabolismo , Células-Tronco/metabolismo , Engenharia Tecidual , Células 3T3 , Animais , Diferenciação Celular , Proliferação de Células , Técnicas de Cocultura , Células Epiteliais/citologia , Epitélio Corneano/citologia , Células Alimentadoras/citologia , Fibroblastos/citologia , Humanos , Camundongos , Células-Tronco/citologia
16.
Am J Ophthalmol Case Rep ; 15: 100532, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31440691

RESUMO

PURPOSE: In this study, we evaluated the feasibility of recovering the corneal surface integrity in a patient suffering from unilateral LSCD through the transplantation of cultured autologous corneal epithelial cells. METHODS: Human corneal epithelial cells (HCECs) were isolated from a limbal biopsy of the contralateral eye of a patient with unilateral LSCD and cultured in monolayer in the presence of an irradiated human fibroblasts feeder layer (iHFL). To produce a cultured autologous corneal epithelium (CACE), HCECs were seeded on a fibrin substrate and maintained in culture until confluence. The in vitro obtained CACE was then used to treat the affected eye of the patient. Two years later, a successful penetrating keratoplasty was performed. RESULTS: Efficient restoration of the corneal epithelium was achieved following transplantation of CACE indicating probable re-colonization of the cornea by stem cells. Corneal transparency was restored after removing the scarred stroma by performing a penetrating keratoplasty. CONCLUSION: CACE produced in vitro was shown to restore a normal corneal surface capable of sustaining a viable and clear penetrating keratoplasty and reestablished a near normal vision in a unilateral LSCD patient.

17.
J Tissue Eng Regen Med ; 13(9): 1595-1608, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31207112

RESUMO

Damage to the corneal epithelium triggers important changes in the extracellular matrix (ECM) to which basal human corneal epithelial cells (hCECs) attach. These changes are perceived by integrin receptors that activate different intracellular signalling pathways, ultimately leading to re-epithelialization of the injured epithelium. In this study, we investigated the impact of pharmacological inhibition of specific signal transduction mediators on corneal wound healing using both monolayers of hCECs and the human tissue-engineered cornea (hTEC) as an in vitro 3D model. RNA and proteins were isolated from the wounded and unwounded hTECs to conduct gene profiling analyses and protein kinase arrays. The impact of WNK1 inhibition was evaluated on the wounded hTECs as well as on hCECs monolayers using a scratch wound assay. Gene profiling and protein kinase arrays revealed that expression and activity of several mediators from the integrin-dependent signaling pathways were altered in response to the ECM changes occurring during corneal wound healing. Phosphorylation of the WNK1 kinase turned out to be the most striking activation event going on during this process. The inhibition of WNK1 by WNK463 reduced the rate of corneal wound closure in both the hTEC and hCECs grown in monolayer compared with their respective negative controls. WNK463 also reduced phosphorylation of the WNK1 downstream targets SPAK/OSR1 in wounded hTECs. These in vitro results allowed for a better understanding of the cellular and molecular mechanisms involved in corneal wound healing and identified WNK1 as a kinase important to ensure proper wound healing of the cornea.


Assuntos
Córnea/patologia , Modelos Biológicos , Engenharia Tecidual/métodos , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Cicatrização , Células 3T3 , Adulto , Idoso , Animais , Proliferação de Células/efeitos dos fármacos , Córnea/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Humanos , Imidazóis/farmacologia , Camundongos , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirrolidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Quinase 1 Deficiente de Lisina WNK/antagonistas & inibidores , Cicatrização/efeitos dos fármacos
18.
Exp Eye Res ; 184: 72-77, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31002821

RESUMO

Uveal melanoma (UM), although a very rare disease, remains a particularly aggressive type of cancer as near 50% of the UM presenting patients will also develop liver metastases within 15 years from the initial diagnostic. One of the most reliable predictive markers of UM at risk of evolving toward the formation of liver lesions is an abnormally elevated level of expression of the transcript encoding the 5-Hydroxytryptamine (serotonin) receptor 2B (HTR2B). In our previous study, we demonstrated that transcription of the HTR2B gene was under the regulatory influences of two transcription factors (TFs), NFI and RUNX1. However, the action of these TFs was insufficient to explain the elevated level of the HTR2B protein in metastatic UM cells or the discrepancies we observed between its expression at the transcriptional and protein levels, therefore suggesting that additional post-translational modifications may also contribute to the altered expression of HTR2B in UM cells. In the present study, we investigated whether the turnover of HTR2B by the proteasome could account at least in part for its deregulated expression. Microarray analyses performed with UM cell lines derived from both non-metastatic and metastatic UM primary tumors revealed important alterations in the expression of some of the transcripts encoding both the E3 ubiquitin ligases and the various subunits of the proteasome, and these modifications were further exacerbated by cell passaging in culture. These alterations also correlated with significant changes in the enzymatic activity of the proteasome. However, the highest proteasome activity and amount of ubiquitinated HTR2B observed in the metastatic T142 cell line, as revealed by immunoprecipitation of ubiquitinated proteins and Western blotting using the HTR2B antibody, apparently had little impact on the total content of HTR2B protein. This contrasts with the near total disappearance of this receptor in the non-metastatic T108 cell line. Our study therefore suggests that the inability of the proteasome to degrade HTR2B in metastatic UM cells might rely on an increased stability of the ubiquitinated receptor in these cells.


Assuntos
Melanoma/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Neoplasias Uveais/metabolismo , Adolescente , Adulto , Idoso , Western Blotting , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Imunoprecipitação , Masculino , Melanoma/genética , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/genética , Neoplasias Uveais/genética
19.
Methods Mol Biol ; 1879: 43-73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29804261

RESUMO

Electrophoretic mobility shift assays and Western blots are simple, efficient, and rapid methods to study DNA-protein interactions and protein expression, respectively. Primary cultures and subcultures of epithelial cells are widely used for the production of tissue-engineered substitutes and are gaining popularity as a model for gene expression studies. The preservation of stem cells through the culture process is essential to produce high quality substitutes. However, the increase in the number of cell passages is associated with a decrease in their ability to proliferate until senescence is reached. This process is likely to be mediated by the altered expression of nuclear-located transcription factors such as Sp1 and NFI, whose expression has been documented to be required for cell adhesion, migration, and differentiation. In some of our recent studies, we observed a correlation between reconstructed tissues exhibiting poor histological and structural characteristics and a low expression of Sp1 in their constituting epithelial cells. Therefore, monitoring both the expression and DNA binding of these transcription factors in human skin and corneal epithelial cells is a useful tool for characterizing the quality of primary cultured epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Epitélio Corneano/metabolismo , Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição NFI/metabolismo , Fator de Transcrição Sp1/metabolismo , Células-Tronco/metabolismo , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Senescência Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Células Epiteliais/fisiologia , Epitélio Corneano/fisiologia , Humanos , Cultura Primária de Células/métodos , Células-Tronco/fisiologia , Engenharia Tecidual/métodos
20.
Int J Mol Sci ; 19(10)2018 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30347896

RESUMO

Because it accounts for 70% of all eye cancers, uveal melanoma (UM) is therefore the most common primary ocular malignancy. In this study, we investigated the molecular mechanisms leading to the aberrant expression of the gene encoding the serotonin receptor 2B (HTR2B), one of the most discriminating among the candidates from the class II gene signature, in metastatic and non-metastatic UM cell lines. Transfection analyses revealed that the upstream regulatory region of the HTR2B gene contains a combination of alternative positive and negative regulatory elements functional in HTR2B- but not in HTR23B⁺ UM cells. We demonstrated that both the transcription factors nuclear factor I (NFI) and Runt-related transcription factor I (RUNX1) interact with regulatory elements from the HTR2B gene to either activate (NFI) or repress (RUNX1) HTR2B expression in UM cells. The results of this study will help understand better the molecular mechanisms accounting for the abnormal expression of the HTR2B gene in uveal melanoma.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Melanoma/genética , Fatores de Transcrição NFI/metabolismo , Receptor 5-HT2B de Serotonina/genética , Neoplasias Uveais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Melanoma/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Receptor 5-HT2B de Serotonina/metabolismo , Neoplasias Uveais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...