Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 19(6): 617-624, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29760533

RESUMO

Humoral immune responses to microbial polysaccharide surface antigens can prevent bacterial infection but are typically strain specific and fail to mediate broad protection against different serotypes. Here we describe a panel of affinity-matured monoclonal human antibodies from peripheral blood immunoglobulin M-positive (IgM+) and IgA+ memory B cells and clonally related intestinal plasmablasts, directed against the lipopolysaccharide (LPS) O-antigen of Klebsiella pneumoniae, an opportunistic pathogen and major cause of antibiotic-resistant nosocomial infections. The antibodies showed distinct patterns of in vivo cross-specificity and protection against different clinically relevant K. pneumoniae serotypes. However, cross-specificity was not limited to K. pneumoniae, as K. pneumoniae-specific antibodies recognized diverse intestinal microbes and neutralized not only K. pneumoniae LPS but also non-K. pneumoniae LPS. Our data suggest that the recognition of minimal glycan epitopes abundantly expressed on microbial surfaces might serve as an efficient humoral immunological mechanism to control invading pathogens and the large diversity of the human microbiota with a limited set of cross-specific antibodies.


Assuntos
Anticorpos Antibacterianos/imunologia , Especificidade de Anticorpos/imunologia , Klebsiella pneumoniae/imunologia , Antígenos O/imunologia , Anticorpos Monoclonais/imunologia , Reações Cruzadas/imunologia , Humanos
2.
Artigo em Inglês | MEDLINE | ID: mdl-29686149

RESUMO

Plasmid-encoded colistin resistance is emerging among extraintestinal pathogenic Escherichia coli strains, including those of the epidemic clone sequence type 131 (ST131)-H30. Mcr-1 transfers a phosphoethanolamine to the lipid A portion of lipopolysaccharide (LPS), conferring resistance to polymyxins. We investigated whether this modification changed the activity of the monoclonal antibody ASN-4, specific to the O25b side chain of ST131 LPS. We confirmed that, unlike colistin, ASN-4 retained its bactericidal and endotoxin-neutralizing activities and therefore offers a treatment option against extremely drug-resistant ST131 isolates.


Assuntos
Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Proteínas de Escherichia coli/metabolismo , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Animais , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Endotoxinas/metabolismo , Escherichia coli Extraintestinal Patogênica/genética , Feminino , Humanos , Lipopolissacarídeos/química , Camundongos , Camundongos Endogâmicos BALB C
3.
Artigo em Inglês | MEDLINE | ID: mdl-28874372

RESUMO

The multidrug-resistant H30 subclone of extraintestinal pathogenic Escherichia coli sequence type 131 (ST131-H30) has spread worldwide. This clone expresses a conserved lipopolysaccharide (LPS) O antigen, O25b. Previously, we described monoclonal antibodies (MAbs) specific to the O25b antigen and characterized them as diagnostic and therapeutic tools. In this study, evidence is provided that besides the previously shown complement-mediated bactericidal effect, an O25b-specific humanized MAb, A1124, also enhances opsonophagocytic uptake by the murine macrophage cell line RAW 264.7. Both phagocyte-dependent killing and phagocyte-independent killing, triggered by A1124, were confirmed in human whole blood. Furthermore, A1124 was shown to neutralize endotoxin activity of purified LPS of clinical isolates. This activity was demonstrated in vitro using both RAW 264.7 cells and a human Toll-like receptor 4 (TLR4) reporter cell line, as well as in a murine model of endotoxemia using purified LPS for challenge. Significant protective efficacy of A1124 at low doses (<1 mg/kg of body weight) was shown in murine and rat models of bacteremia. The contribution of the bactericidal and anti-inflammatory effects was dissected in the mouse bacteremia model through depletion of complement with cobra venom factor (CVF). Protective efficacy was lost in complement-depleted mice, suggesting the essential role of complement-mediated activities for protection in this model. These data suggest that A1124 exhibits different mechanisms of action, namely, direct complement-mediated and opsonophagocytic killing as well as endotoxin neutralization in various challenge models. Which of these activities are the most relevant in a clinical setting will need to be addressed by future translational studies.


Assuntos
Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Animais , Sangue/microbiologia , Linhagem Celular , Proteínas do Sistema Complemento/metabolismo , Modelos Animais de Doenças , Endotoxemia/tratamento farmacológico , Endotoxemia/microbiologia , Endotoxinas/metabolismo , Escherichia coli Extraintestinal Patogênica/isolamento & purificação , Feminino , Humanos , Macrófagos/microbiologia , Camundongos Endogâmicos BALB C , Antígenos O/imunologia , Ratos Sprague-Dawley
4.
Sci Rep ; 7(1): 6635, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747785

RESUMO

Klebsiella pneumoniae is responsible for nosocomial infections causing significant morbidity and mortality. Treatment of newly emerging multi-drug resistant strains is hampered due to severely limited antibiotic choices. Passive immunization targeting LPS O-antigens has been proposed as an alternative therapeutic option, given the limited variability of Klebsiella O-antigens. Here we report that the O3 serogroup, previously considered to have uniform O-antigen built of mannan, represents three different subtypes differing in the number of mannose residues within the O-antigen repeating units. Genetic analysis of the genes encoding mannose polymerization revealed differences that underline the observed structural alterations. The O3 variants represent antigenically different types based on the different reactivity pattern of murine monoclonal antibodies raised against a K. pneumoniae O3 strain. Typing of a collection of K. pneumoniae O3 clinical isolates showed that strains expressing the novel O3b antigen, the tri-mannose form, were more prevalent than those having the penta-mannose form, traditionally called O3, while the tetra-mannose variant, termed here O3a, seems to be rare. A monoclonal antibody cross-reacting with all three O3 sub-serogroups was also selected and shown to bind to the surface of various K. pneumoniae strains expressing different O3 subtypes and capsular antigens.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Reações Cruzadas , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/imunologia , Sorogrupo , Animais , Infecção Hospitalar/microbiologia , Variação Genética , Humanos , Klebsiella pneumoniae/classificação , Camundongos Endogâmicos BALB C , Antígenos O/genética , Antígenos O/imunologia
5.
Virulence ; 8(7): 1203-1215, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28103139

RESUMO

Klebsiella pneumoniae ST258 is a globally distributed multi-drug resistant pathogen responsible for severe invasive infections. In this study, the different virulence potential of K. pneumoniae ST258 isolates in endotoxin susceptible versus resistant animal models was shown. Furthermore, ST258 clinical isolates were found highly sensitive to the bactericidal effect of naive animal and human serum. These observations imply that LPS, released from the rapidly lysed bacteria, may contribute to the high mortality associated with ST258 bacteremia cases. A humanized version (mAb A1102) of a previously described murine mAb specific for the conserved LPS O-antigen, was tested for endotoxin neutralization. A1102 was able to neutralize TLR-4 activation by ST258-derived LPS in vitro with an efficacy exceeding that of polymyxin B by 3 orders of magnitude. Passive immunization with A1102 afforded a significant level of protection in a galactosamine-sensitized mouse model of endotoxemia, induced by ST258-derived LPS, or upon challenge with live bacteria. Efficacy was retained using an aglycosylated IgG, as well as upon complement depletion, suggesting that Fc-independent endotoxin neutralization may be the main protective mechanism in this model, in spite of the complement-dependent bactericidal and opsonic activities additionally observed for A1102 in vitro. Furthermore, rabbits that are naturally highly susceptible to endotoxin, were also significantly protected by low doses of A1102 when challenged with an ST258 strain. Given this unique mode of action and the high protective efficacy of this mAb, passive immunization, as prophylactic or adjunct therapeutic approach for the treatment of infections caused by ST258 isolates should be considered.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Endotoxinas/imunologia , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/imunologia , Antígenos O/imunologia , Animais , Anticorpos Antibacterianos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Feminino , Humanos , Imunização Passiva , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Coelhos , Ratos , Ratos Sprague-Dawley
6.
Antimicrob Agents Chemother ; 59(6): 3109-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25779571

RESUMO

The Escherichia coli sequence type 131 (ST131)-O25b:H4 clone has spread worldwide and become responsible for a significant proportion of multidrug-resistant extraintestinal infections. We generated humanized monoclonal antibodies (MAbs) that target the lipopolysaccharide O25b antigen conserved within this lineage. These MAbs bound to the surface of live bacterial cells irrespective of the capsular type expressed. In a serum bactericidal assay in vitro, MAbs induced >95% bacterial killing in the presence of human serum as the complement source. Protective efficacy at low antibody doses was observed in a murine model of bacteremia. The mode of action in vivo was investigated by using aglycosylated derivatives of the protective MAbs. The significant binding to live E. coli cells and the in vitro and in vivo efficacy were corroborated in assays using bacteria grown in human serum to mimic relevant clinical conditions. Given the dry pipeline of novel antibiotics against multidrug-resistant Gram-negative pathogens, passive immunization with bactericidal antibodies offers a therapeutic alternative to control infections caused by E. coli ST131-O25b:H4.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Antígenos O/metabolismo , Animais , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Feminino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...