Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pept Sci (Hoboken) ; 116(2)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38644932

RESUMO

Monoclonal antibodies (mAbs) that target the P-amyloid peptide (Aß) are important Alzheimer's disease research tools and are now being used as Alzheimer's disease therapies. Conformation-specific mAbs that target oligomeric and fibrillar Aß assemblies are of particular interest, as these assemblies are associated with Alzheimer's disease pathogenesis and progression. This paper reports the generation of rabbit mAbs against two different triangular trimers derived from Aß. These antibodies are the first mAbs generated against Aß oligomer mimics in which the high-resolution structures of the oligomers are known. We describe the isolation of the mAbs using single B-cell sorting of peripheral blood mononuclear cells (PBMCs) from immunized rabbits, the selectivity of the mAbs for the triangular trimers, the immunoreactivity of the mAbs with aggregated Aß42, and the immunoreactivity of the mAbs in brain tissue from the 5xFAD Alzheimer's disease mouse model. The characterization of these mAbs against structurally defined trimers derived from Aß enhances understanding of antibody-amyloid recognition and may benefit the development of diagnostics and immunotherapies in Alzheimer's disease.

2.
ACS Cent Sci ; 10(1): 104-121, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38292607

RESUMO

Antibodies that target the ß-amyloid peptide (Aß) and its associated assemblies are important tools in Alzheimer's disease research and have emerged as promising Alzheimer's disease therapies. This paper reports the creation and characterization of a triangular Aß trimer mimic composed of Aß17-36 ß-hairpins and the generation and study of polyclonal antibodies raised against the Aß trimer mimic. The Aß trimer mimic is covalently stabilized by three disulfide bonds at the corners of the triangular trimer to create a homogeneous oligomer. Structural, biophysical, and cell-based studies demonstrate that the Aß trimer mimic shares characteristics with oligomers of full-length Aß. X-ray crystallography elucidates the structure of the trimer and reveals that four copies of the trimer assemble to form a dodecamer. SDS-PAGE, size exclusion chromatography, and dynamic light scattering reveal that the trimer also forms higher-order assemblies in solution. Cell-based toxicity assays show that the trimer elicits LDH release, decreases ATP levels, and activates caspase-3/7 mediated apoptosis. Immunostaining studies on brain slices from people who lived with Alzheimer's disease and people who lived with Down syndrome reveal that the polyclonal antibodies raised against the Aß trimer mimic recognize pathological features including different types of Aß plaques and cerebral amyloid angiopathy.

3.
Chem Sci ; 15(1): 285-297, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38131075

RESUMO

ß-Hairpins formed by the ß-amyloid peptide Aß are building blocks of Aß oligomers. Three different alignments of ß-hairpins have been observed in the structures of Aß oligomers or fibrils. Differences in ß-hairpin alignment likely contribute to the heterogeneity of Aß oligomers and thus impede their study at high-resolution. Here, we designed, synthesized, and studied a series of ß-hairpin peptides derived from Aß12-40 in one of these three alignments and investigated their solution-phase assembly and folding. These assays reveal the formation of tetramers and octamers that are stabilized by intermolecular hydrogen bonding interactions between Aß residues 12-14 and 38-40 as part of an extended ß-hairpin conformation. X-ray crystallographic studies of one peptide from this series reveal the formation of ß-barrel-like tetramers and octamers that are stabilized by edge-to-edge hydrogen bonding and hydrophobic packing. Dye-leakage and caspase 3/7 activation assays using tetramer and octamer forming peptides from this series reveal membrane-damaging and apoptotic properties. A molecular dynamics simulation of the ß-barrel-like tetramer embedded in a lipid bilayer shows membrane disruption and water permeation. The tetramers and octamers described herein provide additional models of how Aß may assemble into oligomers and supports the hypothesis that ß-hairpin alignment and topology may contribute directly to oligomer heterogeneity.

4.
Proc Natl Acad Sci U S A ; 120(22): e2219216120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216514

RESUMO

The assembly of the ß-amyloid peptide (Aß) to form oligomers and fibrils is closely associated with the pathogenesis and progression of Alzheimer's disease. Aß is a shape-shifting peptide capable of adopting many conformations and folds within the multitude of oligomers and fibrils the peptide forms. These properties have precluded detailed structural elucidation and biological characterization of homogeneous, well-defined Aß oligomers. In this paper, we compare the structural, biophysical, and biological characteristics of two different covalently stabilized isomorphic trimers derived from the central and C-terminal regions Aß. X-ray crystallography reveals the structures of the trimers and shows that each trimer forms a ball-shaped dodecamer. Solution-phase and cell-based studies demonstrate that the two trimers exhibit markedly different assembly and biological properties. One trimer forms small soluble oligomers that enter cells through endocytosis and activate capase-3/7-mediated apoptosis, while the other trimer forms large insoluble aggregates that accumulate on the outer plasma membrane and elicit cellular toxicity through an apoptosis-independent mechanism. The two trimers also exhibit different effects on the aggregation, toxicity, and cellular interaction of full-length Aß, with one trimer showing a greater propensity to interact with Aß than the other. The studies described in this paper indicate that the two trimers share structural, biophysical, and biological characteristics with oligomers of full-length Aß. The varying structural, assembly, and biological characteristics of the two trimers provide a working model for how different Aß trimers can assemble and lead to different biological effects, which may help shed light on the differences among Aß oligomers.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Conformação Proteica , Cristalografia por Raios X , Membrana Celular/metabolismo , Fragmentos de Peptídeos/química
5.
Chem Sci ; 13(44): 13110-13116, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36425497

RESUMO

The antibiotic teixobactin is a promising drug candidate against drug-resistant pathogens, such as MRSA and VRE, but forms insoluble gels that may limit intravenous administration. O-Acyl isopeptide prodrug analogues of teixobactin circumvent the problem of gel formation while retaining antibiotic activity. The teixobactin prodrug analogues contain ester linkages between Ile6 and Ser7, Ile2 and Ser3, or between both Ile6 and Ser7 and Ile2 and Ser3. Upon exposure to physiological pH, the prodrug analogues undergo clean conversion to the corresponding amides, with half-lives between 13 and 115 min. Prodrug analogues containing lysine, arginine, or leucine at position 10 exhibit good antibiotic activity against a variety of Gram-positive bacteria while exhibiting little or no cytotoxicity or hemolytic activity. Because O-acyl isopeptide prodrug analogues of teixobactin exhibit clean conversion to the corresponding teixobactin analogues with reduced propensity to form gels, it is anticipated that teixobactin prodrugs will be superior to teixobactin as drug candidates.

6.
ACS Chem Neurosci ; 13(16): 2473-2482, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35892278

RESUMO

Aß oligomers play a central role in the neurodegeneration observed with Alzheimer's disease. Our laboratory has developed covalently stabilized trimers derived from residues 17-36 of Aß as model systems for studying Aß oligomers. In the current study, we apply the emerging techniques of fluorescence lifetime imaging microscopy (FLIM) and native mass spectrometry (native MS) to better understand the assembly and interactions of the oligomer model system 2AT-L in aqueous solutions and with cells. 2AT-L and fluorescently labeled 2AT-L analogues assemble in the membrane-like environment of SDS-PAGE, showing diffuse bands of oligomers in equilibrium. Native ion mobility-mass spectrometry (native IM-MS) of 2AT-L allows for the identification of discrete oligomers in solution and shows similar patterns of oligomer formation between 2AT-L and fluorescently labeled analogues. Fluorescence microscopy with SH-SY5Y cells reveals that fluorescently labeled 2AT-L analogues colocalize within lysosomes. FLIM studies with phasor analysis further elucidate the assembly of 2AT-L within cells and establish the occurrence of FRET, indicating the presence of oligomers within cells. Collectively, these multiple complementary techniques help better understand the complex behavior of the 2AT-L model system.


Assuntos
Doença de Alzheimer , Neuroblastoma , Peptídeos beta-Amiloides/química , Humanos , Espectrometria de Massas , Fragmentos de Peptídeos/química , Água/química
7.
ACS Chem Neurosci ; 13(6): 714-720, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35191689

RESUMO

This work probes the role of charge in the oligomeric assembly, toxicity, and membrane destabilization of a series of peptides derived from Aß and the E22Q and E22K familial mutants. In the mutant Aß peptides, an acidic residue (E) is replaced with either a neutral or basic residue (Q or K), thus altering the net charge of the peptide. Acetylation at peripheral positions permits modulation of charge of the peptides and allows investigation of the role of charge in their oligomeric assembly, cytotoxicity, and membrane disruption. Peptides with the same net charge generally behave similarly even if the amino acid residue at position 22 differs. As the net charge of the peptide decreases, so does the extent of assembly, cytotoxicity, and membrane destabilization, which were determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, lactate dehydrogenase (LDH)-release assays with SH-SY5Y cells, and dye leakage assays using liposomes. These findings suggest that the charge of the amino acid side chain, rather than its size or hydrophobicity, accounts for the differences in the oligomeric assembly and toxicity of the E22 familial mutants of Aß.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fragmentos de Peptídeos/metabolismo
9.
Methods Enzymol ; 656: 123-168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34325785

RESUMO

Chemically constrained peptides that self-assemble can be used to better understand the molecular basis of amyloid diseases. The formation of small assemblies of the amyloidogenic peptides and proteins, termed oligomers, is central to amyloid diseases. The use of chemical model systems can help provide insights into the structures and interactions of amyloid oligomers, which are otherwise difficult to study. This chapter describes the use of macrocyclic ß-hairpin peptides as model systems to study amyloid oligomers. The first part of the chapter describes the chemical synthesis of the macrocyclic ß-hairpin peptides and covalent assemblies thereof. The second part of the chapter describes the characterization of the oligomers formed by the macrocyclic ß-hairpin peptides, focusing on SDS-PAGE, size-exclusion chromatography (SEC), and X-ray crystallography. The procedures provided focus on the ß-amyloid peptide, but these strategies are applicable to a broad range of amyloid-derived peptides and proteins.


Assuntos
Peptídeos beta-Amiloides , Amiloide , Cristalografia por Raios X , Modelos Moleculares
10.
Eur J Med Chem ; 221: 113530, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34023738

RESUMO

This paper presents the design and study of a first-in-class cyclic peptide inhibitor against the SARS-CoV-2 main protease (Mpro). The cyclic peptide inhibitor is designed to mimic the conformation of a substrate at a C-terminal autolytic cleavage site of Mpro. The cyclic peptide contains a [4-(2-aminoethyl)phenyl]-acetic acid (AEPA) linker that is designed to enforce a conformation that mimics a peptide substrate of Mpro. In vitro evaluation of the cyclic peptide inhibitor reveals that the inhibitor exhibits modest activity against Mpro and does not appear to be cleaved by the enzyme. Conformational searching predicts that the cyclic peptide inhibitor is fairly rigid, adopting a favorable conformation for binding to the active site of Mpro. Computational docking to the SARS-CoV-2 Mpro suggests that the cyclic peptide inhibitor can bind the active site of Mpro in the predicted manner. Molecular dynamics simulations provide further insights into how the cyclic peptide inhibitor may bind the active site of Mpro. Although the activity of the cyclic peptide inhibitor is modest, its design and study lays the groundwork for the development of additional cyclic peptide inhibitors against Mpro with improved activities.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Inibidores de Proteases/farmacologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Desenho de Fármacos , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos Cíclicos/síntese química , Inibidores de Proteases/química , Inibidores de Proteases/toxicidade , Conformação Proteica
11.
Biochemistry ; 60(15): 1191-1200, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33793198

RESUMO

Fluorescent derivatives of the ß-amyloid peptides (Aß) are valuable tools for studying the interactions of Aß with cells. Facile access to labeled expressed Aß offers the promise of Aß with greater sequence and stereochemical integrity, without impurities from amino acid deletion and epimerization. Here, we report methods for the expression of Aß42 with an N-terminal cysteine residue, Aß(C1-42), and its conjugation to generate Aß42 bearing fluorophores or biotin. The methods rely on the hitherto unrecognized observation that expression of the Aß(MC1-42) gene yields the Aß(C1-42) peptide, because the N-terminal methionine is endogenously excised by Escherichia coli. Conjugation of Aß(C1-42) with maleimide-functionalized fluorophores or biotin affords the N-terminally labeled Aß42. The expression affords ∼14 mg of N-terminal cysteine Aß from 1 L of bacterial culture. Subsequent conjugation affords ∼3 mg of labeled Aß from 1 L of bacterial culture with minimal cost for labeling reagents. High-performance liquid chromatography analysis indicates the N-terminal cysteine Aß to be >97% pure and labeled Aß peptides to be 94-97% pure. Biophysical studies show that the labeled Aß peptides behave like unlabeled Aß and suggest that labeling of the N-terminus does not substantially alter the properties of the Aß. We further demonstrate applications of the fluorophore-labeled Aß peptides by using fluorescence microscopy to visualize their interactions with mammalian cells and bacteria. We anticipate that these methods will provide researchers convenient access to useful N-terminally labeled Aß, as well as Aß with an N-terminal cysteine that enables further functionalization.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Cisteína/química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/genética , Biotinilação , Expressão Gênica , Humanos , Fragmentos de Peptídeos/genética
12.
J Am Chem Soc ; 142(49): 20708-20716, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33237748

RESUMO

Oligomers of the ß-amyloid peptide, Aß, play a central role in the pathogenesis and progression of Alzheimer's disease. Trimers and higher-order oligomers composed of trimers are thought to be the most neurotoxic Aß oligomers. To gain insights into the structure and assembly of Aß oligomers, our laboratory has previously designed and synthesized macrocyclic peptides derived from Aß17-23 and Aß30-36 that fold to form ß-hairpins and assemble to form trimers. In this study, we found that mutating Phe20 to cyclohexylalanine (Cha) in macrocyclic Aß-derived peptides promotes crystallization of an Aß-derived peptide containing the Aß24-29 loop (peptide 3F20Cha) and permits elucidation of its structure and assembly by X-ray crystallography. X-ray crystallography shows that peptide 3F20Cha forms a hexamer. X-ray crystallography and SDS-PAGE further show that trimer 4F20Cha, a covalently stabilized trimer derived from peptide 3F20Cha, forms a dodecamer. Size exclusion chromatography shows that trimer 4F20Cha forms higher-order assemblies in solution. Trimer 4F20Cha exhibits cytotoxicity against the neuroblastoma cell line SH-SY5Y. These studies demonstrate the use of the F20Cha mutation to further stabilize oligomers of Aß-derived peptides that contain more of the native sequence and thus better mimic the oligomers formed by full-length Aß.


Assuntos
Peptídeos beta-Amiloides/química , Fenilalanina/análogos & derivados , Fenilalanina/química , Sequência de Aminoácidos , Peptídeos beta-Amiloides/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Mutação , Conformação Proteica em Folha beta , Multimerização Proteica
13.
ACS Chem Neurosci ; 11(15): 2340-2347, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32584538

RESUMO

High-resolution structures of oligomers formed by the ß-amyloid peptide, Aß, are important for understanding the molecular basis of Alzheimer's disease. Dimers of Aß are linked to the pathogenesis and progression of Alzheimer's disease, and tetramers of Aß are neurotoxic. This paper reports the X-ray crystallographic structures of dimers and tetramers, as well as an octamer, formed by a peptide derived from the central and C-terminal regions of Aß. In the crystal lattice, the peptide assembles to form two different dimers-an antiparallel ß-sheet dimer and a parallel ß-sheet dimer-that each further self-assemble to form two different tetramers-a sandwich-like tetramer and a twisted ß-sheet tetramer. The structures of these dimers and tetramers derived from Aß serve as potential models for dimers and tetramers of full-length Aß that form in vitro and in Alzheimer's disease-afflicted brains.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Cristalografia por Raios X , Humanos , Modelos Moleculares , Fragmentos de Peptídeos , Conformação Proteica em Folha beta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...