Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(27): e202300295, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36795861

RESUMO

The operation of nanomachines is fundamentally different from that of their macroscopic counterparts. In particular, the role of solvent is critical yet rarely associated with machine functionality. Here, we study a minimal model of one of the most advanced molecular machines to gain control of its operation by engineering components and the employed solvent. Operation kinetics were changed over more than four orders of magnitude and could be modulated by solvent. Leveraging solvent properties, it was possible to monitor the relaxation of the molecular machine towards equilibrium and measure the heat exchanged in the process. Our work expands the capabilities of acid-base powered molecular machines, confirming experimentally that such systems have a dominant entropy content.

2.
Chem Sci ; 12(24): 8385-8393, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34221319

RESUMO

Biradical spin probes can provide detailed information about the distances between molecules/regions of molecules because the through-space coupling of radical centres, characterised by J, is strongly distance dependent. However, if the system can adopt multiple configurations, as is common in supramolecular complexes, the shape of the EPR spectrum is influenced not only by J but also the rate of exchange between different states. In practice, it is often hard to separate these variables and as a result, the effect of the latter is sometimes overlooked. To demonstrate this challenge unequivocally we synthesised rotaxane biradicals containing nitronyl nitroxide units at the termini of their axles. The rotaxanes exchange between the available biradical conformations more slowly than the corresponding non-interlocked axles but, despite this, in some cases, the EPR spectra of the axle and rotaxane remain remarkably similar. Detailed analysis allowed us to demonstrate that the similar EPR spectral shapes result from different combinations of J and rates of conformational interconversion, a phenomenon suggested theoretically more than 50 years ago. This work reinforces the idea that thorough analysis must be performed when interpreting the spectra of biradicals employed as spin probes in solution.

3.
Chem Commun (Camb) ; 56(84): 12698-12716, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33016290

RESUMO

Carbon-based nanomaterials (CNMs) have attracted considerable attention in the scientific community both from a scientific and an industrial point of view. Fullerenes, carbon nanotubes (CNTs), graphene and carbon dots (CDs) are the most popular forms and continue to be widely studied. However, the general poor solubility of many of these materials in most common solvents and their strong tendency to aggregate remains a major obstacle in practical applications. To solve these problems, organic chemistry offers formidable help, through the exploitation of tailored approaches, especially when aiming at the integration of nanostructures in biological systems. According to our experience with carbon-based nanostructures, the introduction of amino groups is one of the best trade-offs for the preparation of functionalized nanomaterials. Indeed, amino groups are well-known for enhancing the dispersion, solubilization, and processability of materials, in particular of CNMs. Amino groups are characterized by basicity, nucleophilicity, and formation of hydrogen or halogen bonding. All these features unlock new strategies for the interaction between nanomaterials and other molecules. This integration can occur either through covalent bonds (e.g., via amide coupling) or in a supramolecular fashion. In the present Feature Article, the attention will be focused through selected examples of our approach to the synthetic pathways necessary for the introduction of amino groups in CNMs and the subsequent preparation of highly engineered ad hoc nanostructures for practical applications.

4.
Phys Chem Chem Phys ; 21(7): 3558-3563, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30229755

RESUMO

The synthesis of novel dibenzo-24-crown ether substituted nitroxides and their use as spin probes for the detection of cation guests by EPR are reported. Formation of a host-guest complex between the proposed spin probes and several cations, both organic and inorganic, was evidenced by a significant change in the value of the benzylic and nitrogen EPR hyperfine splittings upon complexation. This favorable feature provided a reliable EPR sensor that is able to selectively distinguish different cationic guests.

5.
Chemistry ; 24(5): 1198-1203, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29125653

RESUMO

The synthesis of the new nitroxide crown ether 8 and its use as the wheel in a bistable [2]rotaxane, containing dialkylammonium and 4,4'-bipyridinium recognition sites, is reported. The synthesis of 8 was achieved by the sequential addition of substituted phenyl groups to a nitrone derivatives leading to the preferential formation of the cis stereoisomer. Due to charge-dipole interactions between the nitroxide unit and the bipyridinium moiety, it was possible to probe the movement of the macrocycle between the two molecular stations of the [2]rotaxane after addition of a base by measuring the nitrogen hyperfine splitting in the corresponding EPR spectra. The equilibrium constant for the complexation of dibenzyl viologen by the macrocycle 8 was also determined by EPR titration.

6.
Chemistry ; 22(45): 16017-16021, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27527710

RESUMO

The synthesis of 2,3,5,6-tetrafluoro-4-iodobenzyl tert-butyl nitroxide (2-I) and its use as spin probe for the detection of halogen-bond (XB) complexes by EPR is reported. Formation of a XB complex between 2-I and several XB acceptors was evidenced by a significant change in the value of the benzylic hyperfine splitting upon complexation. Thermodynamic parameters for the formation of XB complex with quinuclidine were obtained by recording EPR spectra in the temperature range 203-294 K. In addition, competitive experiments allowed for the measurement of the equilibrium constant of the XB complex with a chloride anion. The proposed procedure constitutes the first direct EPR methodology providing a reliable determination of the strength of the XB bond in solution.

7.
J Mater Chem B ; 3(3): 432-439, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32262045

RESUMO

Two structurally different water-soluble homoligand gold nanoparticle systems, one featuring a rigid fluorous monolayer in the proximity of the gold core and the other featuring a flexible fluorinated region in a distal position, were studied as putative hosting systems by determining their binding constants for a series of fluorinated and non-fluorinated radical probes by means of ESR spectroscopy. Comparison of the binding constants obtained with hydrogenated homoligand nanoparticles of similar structure used as the reference evidenced that the binding of both hydrogenated and fluorinated guests is favoured in the presence of fluorinated nanoparticles. In addition, a flexible fluorinated monolayer acts as a better hosting system than the more rigid counterpart. In the latter case decreasing the size of the nanoparticles causes a small decrease of the binding affinities for both hydrogenated and fluorinated guests. The same nanoparticle systems were analysed for their ability to retard the phase transfer of a fluorescent dye from an aqueous solution to a toluene layer. All of the nanoparticles studied produced a significant decrease of the phase transfer rate of the dye because of the efficient interaction with the monolayer. These data support the introduction of fluorinated moieties in the monolayer of gold nanoparticles as a novel design tool for the development of drug delivery systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...