Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 361: 107662, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574458

RESUMO

The open-source console MaRCoS, which stands for "Magnetic Resonance Control System", combines hardware, firmware and software elements for integral control of Magnetic Resonance Imaging (MRI) scanners. Previous developments have focused on making the system robust and reliable, rather than on users, who have been somewhat overlooked. This work describes a Graphical User Interface (GUI) designed for intuitive control of MaRCoS, as well as compatibility with clinical environments. The GUI is based on an arrangement of tabs and a renewed Application Program Interface (API). Compared to the previous versions, the MaRGE package ("MaRCoS Graphical Environment") includes new functionalities such as the possibility to export images to standard DICOM formats, create and manage clinical protocols, or display and process image reconstructions, among other features conceived to simplify the operation of MRI scanners. All prototypes in our facilities are commanded by MaRCoS and operated with the new GUI. Here we report on its performance on an experimental 0.2 T scanner designed for hard-tissue, as well as a 72 mT portable scanner presently installed in the radiology department of a large hospital. The possibility to customize, adapt and streamline processes has substantially improved our workflows and overall experience.


Assuntos
Software , Interface Usuário-Computador , Computadores , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador
2.
NMR Biomed ; 36(1): e4825, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36097704

RESUMO

PURPOSE: To describe the current properties and capabilities of an open-source hardware and software package that is being developed by many sites internationally with the aim of providing an inexpensive yet flexible platform for low-cost MRI. METHODS: This article describes three different setups from 50 to 360 mT in different settings, all of which used the MaRCoS console for acquiring data, and different types of software interface (custom-built GUI or Pulseq overlay) to acquire it. RESULTS: Images are presented both from phantoms and in vivo from healthy volunteers to demonstrate the image quality that can be obtained from the MaRCoS hardware/software interfaced to different low-field magnets. CONCLUSIONS: The results presented here show that a number of different sequences commonly used in the clinic can be programmed into an open-source system relatively quickly and easily, and can produce good quality images even at this early stage of development. Both the hardware and software will continue to develop, and it is an aim of this article to encourage other groups to join this international consortium.


Assuntos
Benchmarking , Espectroscopia de Ressonância Magnética , Humanos
3.
Sci Rep ; 12(1): 13147, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907975

RESUMO

Mobile medical imaging devices are invaluable for clinical diagnostic purposes both in and outside healthcare institutions. Among the various imaging modalities, only a few are readily portable. Magnetic resonance imaging (MRI), the gold standard for numerous healthcare conditions, does not traditionally belong to this group. Recently, low-field MRI technology companies have demonstrated the first decisive steps towards portability within medical facilities and vehicles. However, these scanners' weight and dimensions are incompatible with more demanding use cases such as in remote and developing regions, sports facilities and events, medical and military camps, or home healthcare. Here we present in vivo images taken with a light, small footprint, low-field extremity MRI scanner outside the controlled environment provided by medical facilities. To demonstrate the true portability of the system and benchmark its performance in various relevant scenarios, we have acquired images of a volunteer's knee in: (i) an MRI physics laboratory; (ii) an office room; (iii) outside a campus building, connected to a nearby power outlet; (iv) in open air, powered from a small fuel-based generator; and (v) at the volunteer's home. All images have been acquired within clinically viable times, and signal-to-noise ratios and tissue contrast suffice for 2D and 3D reconstructions with diagnostic value. Furthermore, the volunteer carries a fixation metallic implant screwed to the femur, which leads to strong artifacts in standard clinical systems but appears sharp in our low-field acquisitions. Altogether, this work opens a path towards highly accessible MRI under circumstances previously unrealistic.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Fêmur , Humanos , Joelho , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...