Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 524, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853253

RESUMO

BACKGROUND: Amylose, a prebiotic found in yams is known to be beneficial for the gut microflora and is particularly advantageous for diabetic patients' diet. However, the genetic machinery underlying amylose production remains elusive. A comprehensive characterization of the genetic basis of amylose content in yam tubers is a prerequisite for accelerating the genetic engineering of yams with respect to amylose content variation. RESULTS: To uncover the genetic variants underlying variation in amylose content, we evaluated amylose content in freshly harvested tubers from 150 accessions of Dioscorea zingibensis. With 30,000 high-quality single nucleotide polymorphisms (SNP), we performed a genome-wide association analysis (GWAS). The population structure analysis classified the D. zingiberensis accessions into three groups. A total of 115 significant loci were detected on four chromosomes. Of these, 112 significant SNPs (log10(p) = 5, q-value < 0.004) were clustered in a narrow window on the chromosome 6 (chr6). The peak SNP at the position 75,609,202 on chr6 could explain 63.15% of amylose variation in the population and fell into the first exon of the ADP-glucose pyrophosphorylase (AGPase) small subunit gene, causing a non-synonymous modification of the resulting protein sequence. Allele segregation analysis showed that accessions with the rare G allele had a higher amylose content than those harboring the common A allele. However, AGPase, a key enzyme precursor of amylose biosynthesis, was not expressed differentially between accessions with A and G alleles. Overexpression of the two variants of AGPase in Arabidopsis thaliana resulted in a significantly higher amylose content in lines transformed with the AGPase-G allele. CONCLUSIONS: Overall, this study showed that a major genetic variant in AGPase probably enhances the enzyme activity leading to high amylose content in D. zingiberensis tuber. The results provide valuable insights for the development of amylose-enriched genotypes.


Assuntos
Amilose , Dioscorea , Estudo de Associação Genômica Ampla , Tubérculos , Polimorfismo de Nucleotídeo Único , Amilose/metabolismo , Dioscorea/genética , Dioscorea/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Plantas Geneticamente Modificadas/genética , Genes de Plantas
2.
Mol Plant ; 16(11): 1847-1865, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37822080

RESUMO

Histone H2A monoubiquitination is associated with transcriptional repression and needs to be removed by deubiquitinases to facilitate gene transcription in eukaryotes. However, the deubiquitinase responsible for genome-wide H2A deubiquitination in plants has yet to be identified. In this study, we found that the previously identified PWWP-EPCR-ARID-TRB (PEAT) complex components interact with both the ubiquitin-specific protease UBP5 and the redundant histone acetyltransferases HAM1 and HAM2 (HAM1/2) to form a larger version of PEAT complex in Arabidopsis thaliana. UBP5 functions as an H2A deubiquitinase in a nucleosome substrate-dependent manner in vitro and mediates H2A deubiquitination at the whole-genome level in vivo. HAM1/2 are shared subunits of the PEAT complex and the conserved NuA4 histone acetyltransferase complex, and are responsible for histone H4K5 acetylation. Within the PEAT complex, the PWWP components (PWWP1, PWWP2, and PWWP3) directly interact with UBP5 and are necessary for UBP5-mediated H2A deubiquitination, while the EPCR components (EPCR1 and EPCR2) directly interact with HAM1/2 and are required for HAM1/2-mediated H4K5 acetylation. Collectively, our study not only identifies dual roles of the PEAT complex in H2A deubiquitination and H4K5 acetylation but also illustrates how these processes collaborate at the whole-genome level to regulate the transcription and development in plants.


Assuntos
Arabidopsis , Histonas , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Receptor de Proteína C Endotelial , Acetilação , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Enzimas Desubiquitinantes , Solo
3.
Int J Biol Macromol ; 236: 123917, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871681

RESUMO

The compounding of polysaccharide macromolecules and antibacterial agents always has been the preferred strategy to prepare antibacterial products, attracting increasing interest. Herein, a novel acid-responsive oxidized dextran-based nanoplatform (OTP NP) has been fabricated for photodynamic antibacterial therapy by combing photosensitizer monoaminoporphyrin (TPP-NH2) with oxidized dextran (ODex) via the Schiff Base reaction. OTP NP of about 100 nm is composed of an inner hydrophobic core of 30 nm and peripheral polysaccharide macromolecules. The OTP NP killed 99.9 % of E. coli and S. aureus within 1.5 light cycles at a concentration of 200 µg/mL. Concurrently, OTP NP exhibited excellent cytocompatibility at a concentration of 1 mg/mL (about 5 folds bactericidal concentration). Particularly, except for the recognized antibacterial mechanism of photodynamic therapy, a novel mechanism of bacterial membrane damage was discovered: the bacterial cell membrane was peeled off and formed spherical particles that aggregated around the bacteria to accelerate bacterial apoptosis under the combined action of ROS and nanomaterials. Moreover, the slightly soluble drug levofloxacin (Lev) as a model drug was loaded into OTP NP to test its carrier function, providing a practicable strategy to design multifunctional polysaccharide-based photodynamic antibacterial materials.


Assuntos
Fotoquimioterapia , Staphylococcus aureus , Escherichia coli , Dextranos , Antibacterianos/farmacologia , Antibacterianos/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química
4.
Molecules ; 27(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500416

RESUMO

A multicolor immunochromatographic assay platform based on quantum dot nanobeads (QBs) for the rapid and simultaneous detection of nitrofuran metabolites in different aquatic products is documented. These metabolites include 3-amino-2-oxazolidinone (AOZ), 1-aminohydantoin (AHD), semicarbazide (SEM), and 3-amino-5-morpholino-methyl-1,3-oxazolidinone (AMOZ). QBs with emission colors of red, yellow, green, and orange were employed and functionalized with the corresponding antibodies to each analyte to develop a multicolor channel. The visual detection limits (cutoff values) of our method for AOZ, AHD, SEM, and AMOZ reached up to 50 ng/mL, which were 2, 20, 20, and 20 times lower than those of traditional colloidal gold test strips, respectively. The test strip is capable of detection within 10 min in real samples while still achieving good stability and specificity. These results demonstrate that the developed multicolor immunochromatographic assay platform is a promising technique for multiplex, highly sensitive, and on-site detection of nitrofuran metabolites.


Assuntos
Nitrofuranos , Pontos Quânticos , Contaminação de Alimentos/análise , Nitrofuranos/química , Cromatografia de Afinidade/métodos , Semicarbazidas
5.
Plant Sci ; 325: 111495, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36240912

RESUMO

Grain weight is an important characteristic of grain shape and a key contributing factor to the grain yield in rice. Here, we report that gw2.1, a new allele of the Grain Width and Weight 2 (GW2) gene, regulates grain size and grain weight. A single nucleotide substitution in the coding sequence (CDS) of gw2.1 resulted in the change of glutamate to lysine (E128K) in GW2.1 protein. Complementation tests and GW2 overexpression experiments demonstrated that the missense mutation in gw2.1 was responsible for the phenotype of enlarged grain size in the mutant line jf42. The large grain trait of the near-isogenic line NIL-gw2.1 was found to result from increased cell proliferation during flower development. Meanwhile, NIL-gw2.1 was shown to increase grain yield without compromising the grain quality. The GW2 protein was localized to the cell nucleus and membrane, and interacted with CHB705, a subunit of the chromatin remodeling complex. Finally, the F1 hybrids from crosses of NIL-gw2.1 with 7 cytoplasmic male-sterile lines exhibited large grains and desirable grain appearance. Thus, gw2.1 is a promising allele that could be applied to improve grain yield and grain appearance in rice. AVAILABILITY OF DATA AND MATERIALS: The datasets generated and/or analyzed in the study are available from the corresponding author on reasonable request.


Assuntos
Oryza , Oryza/genética , Alelos , Locos de Características Quantitativas , Grão Comestível/metabolismo , Fenótipo
6.
Anal Methods ; 14(23): 2311-2317, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35638370

RESUMO

One kind of phenolic substituted dicyanoisophorone derivative (Is-OL) has been designed and successfully synthesized for the detection of hypochlorite in water samples, test strips and living HeLa cells. The probe Is-OL showed high sensitivity and selectivity to hypochlorite over other competitive ROS and metal ions. Moreover, Is-OL can react instantaneously with hypochlorite (<5 s) while exhibiting a significant color change from yellow to colorless, which makes "naked-eye" detection possible with a low detection limit (0.095 µM). The results based on water tests and living HeLa cell experiments showed that Is-OL could be applied as a potential candidate for the detection of hypochlorite.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Células HeLa , Humanos , Íons , Água
7.
Foods ; 11(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35327241

RESUMO

In this work, a new colorimetric sensor based on mesoporous silica nanosphere-modified color-sensitive materials was established for application in monitoring the total volatile basic nitrogen (TVB-N) of oysters. Firstly, mesoporous silica nanospheres (MSNs) were synthesized based on the improved Stober method, then the color-sensitive materials were doped with MSNs. The "before image" and the "after image" of the colorimetric senor array, which was composed of nanocolorimetric-sensitive materials by a charge-coupled device (CCD) camera were then collected. The different values of the before and after image were analyzed by principal component analysis (PCA). Moreover, the error back-propagation artificial neural network (BP-ANN) was used to quantitatively predict the TVB-N values of the oysters. The correlation coefficient of the colorimetric sensor array after being doped with MSNs was greatly improved; the Rc and Rp of BP-ANN were 0.9971 and 0.9628, respectively when the principal components (PCs) were 10. Finally, a paired sample t-test was used to verify the accuracy and applicability of the BP-ANN model. The result shows that the colorimetric-sensitive materials doped with MSNs could improve the sensitivity of the colorimetric sensor array, and this research provides a fast and accurate method to detect the TVB-N values in oysters.

8.
Sensors (Basel) ; 22(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35062644

RESUMO

Volatile organic compounds (VOCs) could be used as an indicator of the freshness of oysters. However, traditional characterization methods for VOCs have some disadvantages, such as having a high instrument cost, cumbersome pretreatment, and being time consuming. In this work, a fast and non-destructive method based on colorimetric sensor array (CSA) and visible near-infrared spectroscopy (VNIRS) was established to identify the freshness of oysters. Firstly, four color-sensitive dyes, which were sensitive to VOCs of oysters, were selected, and they were printed on a silica gel plate to obtain a CSA. Secondly, a charge coupled device (CCD) camera was used to obtain the "before" and "after" image of CSA. Thirdly, VNIS system obtained the reflected spectrum data of the CSA, which can not only obtain the color change information before and after the reaction of the CSA with the VOCs of oysters, but also reflect the changes in the internal structure of color-sensitive materials after the reaction of oysters' VOCs. The pattern recognition results of VNIS data showed that the fresh oysters and stale oysters could be separated directly from the principal component analysis (PCA) score plot, and linear discriminant analysis (LDA) model based on variables selection methods could obtain a good performance for the freshness detection of oysters, and the recognition rate of the calibration set was 100%, while the recognition rate of the prediction set was 97.22%. The result demonstrated that the CSA, combined with VNIRS, showed great potential for VOCS measurement, and this research result provided a fast and nondestructive identification method for the freshness identification of oysters.


Assuntos
Ostreidae , Compostos Orgânicos Voláteis , Animais , Colorimetria , Análise Discriminante , Espectroscopia de Luz Próxima ao Infravermelho
9.
Bioengineered ; 12(2): 11947-11958, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34818970

RESUMO

Type 2 diabetes mellitus (T2DM) is known as a complex genetic disease characterized by genetic and environmental factors. The imbalanced intestinal flora and intestinal mucosal barrier are considered to be related to T2DM. Curcumin has been proved to affect the progression of T2DM. T2DM animal was established by low-dose streptozotocin intraperitoneal injection combined with high-fat diet (HFD) feeding. Hematoxylin and eosin (HE) staining and transfer electron microscopy (TEM) were used to observe morphological changes of intestinal tissues of T2DM rats. Insulin and glucose tolerance tests were performed to investigate the influence of curcumin on blood glucose. Curcumin significantly improved the intestinal integrity, hyperglycemia and insulin resistance in diabetic rats. The metabolic endotoxemia induced by HFD in diabetic rats was inhibited remarkably. Curcumin reversed gut microbiota dysbiosis in diabetic rats caused by HFD. We demonstrated that curcumin could protect intestinal mucosal barrier, improve insulin resistance and reduce blood glucose in diabetic rats. This study might provide experimental evidence for the prevention and treatment in T2DM.


Assuntos
Curcumina/farmacologia , Diabetes Mellitus Tipo 2/complicações , Endotoxemia/metabolismo , Microbioma Gastrointestinal , Intestinos/patologia , Intestinos/fisiopatologia , Animais , Bacteroidetes/fisiologia , Bifidobacterium/fisiologia , Dieta Hiperlipídica , Endotoxemia/complicações , Firmicutes/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ontologia Genética , Hiperglicemia/complicações , Resistência à Insulina , Intestinos/efeitos dos fármacos , Lipopolissacarídeos , Metabolômica , Camundongos , NF-kappa B/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Junções Íntimas/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Inorg Chem ; 60(11): 8143-8153, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34027670

RESUMO

Chromium Cr(VI) is frequently used in many fields and has been intensively researched for detection and/or removal from contaminated water. However, the existing approaches are still of low efficiency, high cost, and cumbersome in operation. It is thus highly imperative to hunt for alternative avenues to get out of the predicament. In this work, two bcu topological and highly stable zirconium-metal-organic frameworks (Zr-MOFs) of 1 and 2 have been deliberately prepared, displaying channel-type interior spaces replete with free bipyridine/biquinoline matrices and Zr-O defect sites. Because of their unique intrinsic features of high porosity and photosensitivity, 1 and 2 were deployed as versatile platforms to sense, adsorb, and catalytically reduce Cr(VI) ions. Indeed, the Zr-MOF of 1 performs excellently in fluorescence sensing and adsorption trapping of Cr(VI), with an ultralow detection limit of 0.0176 ppm and a fairly high saturated adsorption capacity of 145.77 mg/g, while 2 is more powerful than 1 in photochemical removal of Cr(VI), exhibiting a remarkable reduction efficiency of 98.05% just within 70 min and still up to 92.21% even after five consecutive photocatalytic cycles. Furthermore, possible photoluminescence, quenching, and reduction mechanisms were also tentatively proposed. This study may open up a new avenue for addressing some unresolved environmental issues, that is, the decontamination of highly toxic Cr(VI) from water.

11.
Opt Lett ; 46(3): 625-628, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528424

RESUMO

We propose and demonstrate a silicon-photonics-based laser that outputs multiple independently tunable wavelengths using a single InP gain element. We use it to generate a C-band tunable source for a coherent transceiver and simultaneously a 1480-nm source to pump an Er-doped fiber amplifier on the transmitter output.

12.
Opt Lett ; 46(1): 142-145, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33362036

RESUMO

A silicon-photonic tunable laser emitting two tunable wavelengths simultaneously is demonstrated. The laser consists of a single semiconductor optical amplifier that provides shared gain and a silicon-photonic chip that provides wavelength selections. A total optical power of 29.3 mW is shown, with 300 mA of gain current at 40°C. Continuous tuning of frequency spacing from 69.5 GHz to 114.1 GHz is demonstrated. The two simultaneous laser channels show highly correlated phase noise, with a phase noise correlation coefficient of 90.7%.

13.
Opt Express ; 28(18): 26492-26498, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906921

RESUMO

We experimentally demonstrate a low-chirp high-speed push-pull dual-ring modulator. The device is formed by two parallel cascaded add-drop ring modulators which has a Fabry-Perot resonance spectrally similar as electromagnetically induced transparency (EIT) effect. Differential drive signals are applied to the two rings to shift the individual resonances towards opposite directions, creating intensity modulation with suppressed frequency chirp. We present static and dynamic characterization of the device, including chirp parameter. We also demonstrate 144 Gb/s PAM-4 data transmission with 1-km standard single-mode fiber (SSMF) with BER below hard-decision forward error correction (HD-FEC) threshold with 7% overhead.

14.
Acta Diabetol ; 57(9): 1101-1109, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32280999

RESUMO

AIMS: CXXC finger protein 4 (CXXC4) is an identified negative regulator of the Wnt/ß-catenin pathway, and it is involved in cancer cell proliferation. In this study, we sought to clarify whether CXXC4 is involved in glucose-stimulated ß-cell proliferation. MATERIALS AND METHODS: We investigated the biological function of CXXC4 in glucose-induced ß-cell proliferation, and we investigated the underlying mechanism of this activity. First, we analyzed CXXC4 expression in established rat models treated for 24 h with a high glucose infusion and in INS-1 cells and primary rat islets treated with different concentrations of glucose. Subsequently, we used an adenovirus to overexpress CXXC4 in INS-1 cells and primary islets. The proliferation rate of ß-cells was evaluated by CCK-8 and EdU incorporation methods. Cell cycle analysis was performed by flow cytometry. Finally, the Wnt signaling pathway and its downstream genes were assessed by Western blot. RESULTS: CXXC4 mRNA levels were significantly lower in islets isolated from glucose-infused rats than they were in those isolated from saline-infused rats. Decreased expression of CXXC4 also correlated with high glucose treatment of INS-1 cells and primary rat ß-cells. Furthermore, adenovirus-mediated overexpression of CXXC4 inhibited cell proliferation induced by the high glucose treatment in vitro, which was mechanistically mediated by Wnt signaling and a decrease in cyclin D2 expression. CONCLUSIONS: Glucose inhibits CXXC4 expression and hence promotes pancreatic ß-cell proliferation. Our findings may provide a new potential target for the treatment of diabetes.


Assuntos
Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/fisiologia , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Animais , Proliferação de Células/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
15.
ACS Appl Mater Interfaces ; 11(34): 30596-30609, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31373193

RESUMO

Biomaterials that have capacities to simultaneously induce bone regeneration and kill bacteria are in demand because bone defects face risks of severe infection in clinical therapy. To meet the demand, multifunctional biodegradable microspheres are fabricated, which contain vancomycin to provide antibacterial activity and strontium-doped apatite to provide osteocompatibility. Moreover, the strontium component shows activity in promoting angiogenesis, which further favors osteogenesis. For producing the microspheres, vancomycin is loaded into mesoporous silica and embedded in polylactide-based microspheres via the double emulsion technique and the strontium-doped apatite is deposited onto the microspheres via biomineralization in strontium-containing simulated body fluid. Sustained release behaviors of both vancomycin and Sr2+ ions are achieved. The microspheres exhibit strong antibacterial effect against Staphylococcus aureus, while demonstrating excellent cell/tissue compatibility. Studies of differentiation confirm that the introduction of strontium element strengthens the angiogenic and osteogenic expressions of mesenchymal stromal cells. Subcutaneous injection of the microspheres into rabbit's back confirms their effectiveness in inducing neovascularization and ectopic osteogenesis. Finally, an infected rabbit femoral condyle defect model is created with S. aureus infection and the multifunctional microspheres are injected, which display significant antibacterial activity in vivo and achieve efficient new bone formation in comparison with biomineralized microspheres without vancomycin loading. The vancomycin- and strontium-loaded microspheres, being biomineralized, injectable, and biodegradable, are attractive because of their flexibility in integrating multiple functions into one design, whose potentials in treating infected bone defects are highly expected.


Assuntos
Indutores da Angiogênese , Antibacterianos , Regeneração Óssea/efeitos dos fármacos , Portadores de Fármacos , Fêmur , Microesferas , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/crescimento & desenvolvimento , Vancomicina , Indutores da Angiogênese/química , Indutores da Angiogênese/farmacocinética , Indutores da Angiogênese/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Fêmur/metabolismo , Fêmur/patologia , Porosidade , Coelhos , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Dióxido de Silício/farmacologia , Estrôncio/química , Estrôncio/farmacocinética , Estrôncio/farmacologia , Vancomicina/química , Vancomicina/farmacocinética , Vancomicina/farmacologia
16.
J Mater Sci Mater Med ; 30(4): 47, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-30980130

RESUMO

The objective of this study was to fabricate and characterize chitosan combined with different amounts of simvastatin-loaded nanoparticles and to investigate their potential for guided bone regeneration in vitro and in vivo. Different SIM-CSN formulations were combined into a chitosan scaffold (SIM-CSNs-S), and the morphology, simvastatin release profile, and effect on cell proliferation and differentiation were investigated. For in vivo experiments, ectopic osteogenesis and the critical-size cranial defect model in SD rats were chosen to evaluate bone regeneration potential. All three SIM-CSNs-S formulations had a porous structure and exhibited sustained simvastatin release. CSNs-S showed excellent degradation and biocompatibility characteristics. The 4 mg SIM-CSNs-S formulation stimulated higher BMSC ALP activity levels, demonstrated significantly earlier collagen enhancement, and led to faster bone regeneration than the other formulations. SIM-CSNs-S should have a significant effect on bone regeneration.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Quitosana/química , Regeneração Tecidual Guiada/métodos , Nanopartículas/química , Nanopartículas/metabolismo , Sinvastatina/farmacocinética , Alicerces Teciduais/química , Animais , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/metabolismo , Preparações de Ação Retardada , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Composição de Medicamentos , Masculino , Teste de Materiais , Microesferas , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Sinvastatina/administração & dosagem , Propriedades de Superfície , Engenharia Tecidual/métodos
17.
Biomater Sci ; 7(1): 272-286, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30467569

RESUMO

Treatment of infected bone defects still remains a formidable clinical challenge, and the design of bone implants with both anti-bacterial activity and -osteogenesis effects is nowadays regarded as a powerful strategy for infection control and bone healing. In the present study, bioresorbable porous-structured microspheres were fabricated from an amphiphilic block copolymer composed of poly(l-lactide) and poly(ethyl glycol) blocks. After being surface coated with mussel-inspired polydopamine, the microspheres were loaded with nanosilver via the reduction of silver nitrate and apatite via biomineralization in sequence. At optimized loading amounts, the nanosilver-loaded microspheres showed no unfavorable effects on the proliferation and differentiation of bone marrow mesenchymal stem cells despite preserving strong antibacterial activity in in vitro evaluations. For the critical-sized defects (φ = 8 mm) in the rat cranium that was pre-infected with Staphylococcus aureus, the filling of the dual-purpose microspheres demonstrated an effective way to kill bacteria in vivo, and in the meantime, it promoted new bone formation efficiently alongside the degradation of microspheres. Thus, the results suggested that bioresorbable microspheres with both osteoconductive and antibacterial activities were a good choice for treating infected bone defects.


Assuntos
Antibacterianos/uso terapêutico , Apatitas/uso terapêutico , Regeneração Óssea/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/uso terapêutico , Prata/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Apatitas/farmacologia , Linhagem Celular , Materiais Revestidos Biocompatíveis/farmacologia , Indóis/farmacologia , Indóis/uso terapêutico , Microesferas , Osteogênese/efeitos dos fármacos , Polímeros/farmacologia , Polímeros/uso terapêutico , Ratos , Ratos Sprague-Dawley , Prata/farmacologia , Crânio/efeitos dos fármacos , Crânio/lesões , Crânio/microbiologia
18.
Mater Sci Eng C Mater Biol Appl ; 92: 206-215, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184744

RESUMO

Surface modification of titanium with a hydroxyapatite (HAP) coating can improve the bioactivity of pristine titanium. The traditional techniques for coating HAP on titanium involve nonmild treatments using strong bases or acids or high temperatures. In this study, the coating of HAP was carried out by a novel methodology called phase-transited lysozyme-assisted hydroxyapatite formation (PAH); in this process of biomimetic mineralization, the abundant functional carboxyl groups of phase-transited lysozyme (PTL) were responsible for the nucleation of HAP crystals by concentrating Ca2+ ions at the interface between PTL and CaCl2 solution and for the subsequent growth of HAP crystals occurring in simulated body fluid (SBF). In vitro and in vivo experiments verified that the surface of titanium modified with the HAP/PTL-Ti multilayer was endowed with improved biocompatibility and osteoinductivity compared with those of pristine titanium. Therefore, PAH is a simple, rapid, low-cost and green process for the surface modification of titanium with an HAP coating and thus will be a promising methodology for the surface modification of titanium implants.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/química , Muramidase/metabolismo , Transição de Fase , Titânio/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Propriedades de Superfície
19.
Food Chem ; 268: 300-306, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30064762

RESUMO

A novel colorimetric sensor array based on boron-dipyrromethene (BODIPY) dyes was developed to monitor the volatile organic compounds (VOCs) of rice at different storage times. The VOCs of rice at different storage times were analyzed through GC-MS combined with multivariate analysis, and the compound 18-crown-6 was found significantly changed during rice aging process. Aimed at 18-crown-6 with particular macrocyclic structure, a series of BODIPYs were targeted synthesized for the selection of sensitive chemically responsive dyes. Four dyes were chosen to construct colorimetric sensor array based on sensitivity to VOCs of aged rice samples. Data acquired from the interactions of dyes and rice VOCs were subjected to the principal components analysis (PCA) and linear discriminant analysis (LDA). The optimal performance obtained by the LDA model was 98.75% in prediction set. Application of BODIPYs in this work has improved the sensitivity and expanded the choices of colorimetric dyes for the specific detection.


Assuntos
Colorimetria , Corantes/química , Oryza/química , Compostos Orgânicos Voláteis/análise , Compostos de Boro/química , Éteres de Coroa/química , Análise Discriminante , Manipulação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Análise em Microsséries , Oryza/metabolismo , Análise de Componente Principal , Fatores de Tempo
20.
Cell Prolif ; 51(4): e12460, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29701270

RESUMO

OBJECTIVES: To investigate the role of hierarchical micro/nanoscale topography of direct metal laser sintering (DMLS) titanium surfaces in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), as well as the possible underlying epigenetic mechanism. MATERIALS AND METHODS: Three groups of titanium specimens were prepared, including DMLS group, sandblasted, large-grit, acid-etched (SLA) group and smooth titanium (Ti) group. BMSCs were cultured on discs followed by surface characterization. Cell adhesion and proliferation were examined by SEM and CCK-8 assay, while osteogenic-related gene expression was detected by real-time RT-PCR. Immunofluorescence, western blotting and in vivo study were also performed to evaluate the potential for osteogenic induction of materials. In addition, to investigate the underlying epigenetic mechanisms, immunofluorescence and western blotting were performed to evaluate the global level of H3K4me3 during osteogenesis. The H3K4me3 and H3K27me3 levels at the promoter area of the osteogenic gene Runx2 were detected by ChIP assay. RESULTS: The DMLS surface exhibits greater protein adsorption ability and shows better cell adhesion performance than SLA and Ti surfaces. Moreover, both in vitro and in vivo studies demonstrated that the DMLS surface is more favourable for the osteogenic differentiation of BMSCs than SLA and Ti surfaces. Accordingly, osteogenesis-associated gene expression in BMSCs is efficiently induced by a rapid H3K27 demethylation and increase in H3K4me3 levels at gene promoters upon osteogenic differentiation on DMLS titanium surface. CONCLUSIONS: Topographical cues of DMLS surfaces have greater potential for the induction of osteogenic differentiation of BMSCs than SLA and Ti surfaces both in vitro and in vivo. A potential epigenetic mechanism is that the appropriate topography allows rapid H3K27 demethylation and an increased H3K4me3 level at the promoter region of osteogenesis-associated genes during the osteogenic differentiation of BMSCs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Epigênese Genética , Osteogênese/efeitos dos fármacos , Titânio/farmacologia , Fosfatase Alcalina/metabolismo , Ligas , Células da Medula Óssea/citologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microscopia Confocal , Regiões Promotoras Genéticas , Propriedades de Superfície , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...