Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Macromol Biosci ; : e2400009, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490190

RESUMO

Taxol is one of the most widely used chemotherapeutic agents but is restricted by its poor solubility and severe side effects in clinical practice. To overcome these limitations, pH-sensitive nanoparticles, Acetalated Dextran6k-PEG5k-PLA2k-Taxol (ADPP-PTX), non-pH-sensitive nanoparticles, and Propionic Anhydride modified Dextran6k-PEG5k-PLA2k-Taxol (PDPP-PTX) are developed for the delivery of Taxol. Compared with PDPP-PTX, ADPP-PTX shows higher sensitivity to acid response and greater anti-proliferative effect on cancer cells. In the in vivo study, ADPP-PTX treatment effectively suppresses the growth of tumors, while only half the dose of Taxol is used, which significantly reduces systemic toxicity compared with Taxol and PDPP-PTX.

2.
Chemphyschem ; 25(8): e202300897, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38323673

RESUMO

As a photocathode with a band gap of about 1.8 eV, copper bismuthate (CuBi2O4) is a promising material for photoelectrochemical (PEC) water splitting. However, weak charge transfer capability and severe carrier recombination suppress the PEC performance of CuBi2O4. In this paper, the conductivity and carriers transport of CuBi2O4 are improved via introducing Zn2+ into the synthesis precursor of CuBi2O4, driving a beneficial 110 mV positive shift of onset potential in photocurrent. Detailed investigations demonstrate that the introduction of an appropriate amount of zinc leads to in situ segregation of ZnO which serves as an electron transport channel on the surface of CuBi2O4, forming heterojunctions. The synergistic effect of heterojunctions and doping simultaneously promotes the charge transfer and the carrier concentration. OCP experiment proves that ZnO/Zn-CuBi2O4 possesses better charge separation; the Mott-Schottky curve shows that the doping of Zn significantly enhances the carrier concentration; carrier lifetime calculated from time-resolved photoluminescence confirms faster extraction of carriers.

3.
Dalton Trans ; 52(22): 7544-7550, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37183969

RESUMO

BiVO4 possesses a suitable band gap for photoelectrochemical (PEC) water splitting to produce hydrogen; however, the performance of BiVO4 is limited by several adverse factors. The bulk charge recombination and the slow surface water oxidation reaction of BiVO4 are main unfavorable factors. In view of these disadvantages, an Fe-Bi electrocatalyst is loaded on BiVO4 to improve the PEC performance of BiVO4. After modification, the onset potential of BiVO4 shifts negatively by 60 mV, and the saturated photocurrent is greatly increased. Systematic studies demonstrate that the Fe-Bi electrocatalyst not only enhances the bulk charge separation, but also accelerates the surface water oxidation rate of BiVO4 and greatly reduces the resistance of the reaction interface.

4.
J Hazard Mater ; 442: 130088, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206712

RESUMO

Understanding the photocatalytic reductive dehalogenation mechanism of halogenated aromatic pollutants is of great research value. However, the proton source in the photocatalytic dehalogenation process of representative halogenated aromatic pollutants by TiO2 is not clear. In this study, the TiO2 surface was modified by hydrochloric acid, sodium hydroxide, and sodium fluoride to obtain TiO2 samples with different hydroxyl groups. It was found that the hydroxyl groups on the surface of TiO2 affects the sequence of proton and electron transfer in dehalogenation. The abundance of hydroxyl groups on the surface of TiO2 can accelerate the reductive dehalogenation process of representative halogenated aromatic pollutants. The kinetic solvent isotope effect was used to study the proton-coupled electron transfer process in the reaction. It shows that the enriching of protons on TiO2 bridging oxygen (bridging hydroxyl groups) is conducive to the rapid step of protonation of the reactant, and subsequent proton and electron transfer. On the contrary, the bridging hydroxyl groups can be removed by reacting with strongly basic sodium hydroxide and sodium ions can occupy the bridging oxygen. The substitution of bridging oxygen by fluorine ions can also lead to the destruction of bridge hydroxyl groups. Significantly, the absence of bridging hydroxyl groups on titanium dioxide will lead to the dehalogenation of representative halogenated aromatic pollutants initiated by electron transfer. This study is helpful to understand dehalogenation reaction paths catalyzed by TiO2.


Assuntos
Poluentes Ambientais , Prótons , Flúor , Hidróxido de Sódio , Ácido Clorídrico , Fluoreto de Sódio , Titânio , Radical Hidroxila , Oxigênio , Solventes , Sódio
5.
Chem Commun (Camb) ; 55(89): 13390-13393, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31637379

RESUMO

Pr3+:CaTiO3, a robust persistent luminescent material, was coupled with chiral molecules and Ag nanoparticles (NPs) to construct a Pr3+:CaTiO3@Ag@l-cysteine ternary material that can realize rapid enantiomer selective sensing of l- and d-arginine by making use of the chiral induced spin selectivity (CISS) effect. In addition, long-lifetime photoelectrons excited in the Pr3+:CaTiO3 matrix were effectively transported through a Ag NP "bridge" into the l-cysteine chiral monolayer, due to cooperation between each component in the ternary material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...