Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Int J Biol Macromol ; 279(Pt 2): 134976, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39179086

RESUMO

P-selectin has been shown to enhance growth and metastasis of mouse tumors by promoting regulatory T cell (Treg) infiltration into the tumors. Theoretically, a P-selectin antagonist could suppress the process. Popylene glycol alginate sodium sulfate (PSS) is a heparin-like marine drug, which was originally approved to treat cardiovascular disease in China. Previously, we reported that PSS was an effective P-selectin antagonist in vitro. However, it is unknown whether PSS can regulate Treg infiltration and its effect on lung metastasis in vivo. Our results showed that PSS at 30 mg/kg significantly suppressed lung metastasis and improved overall survival, with potency comparable to the positive control LMWH. Mechanistic study indicated that PSS blocked tumor cells adhesion and activated platelets by directly binding with activated platelet's P-selectin. Compared to the model group, PSS decreased the percent of Tregs by 63 % in lungs after treating for 21 days while increasing CD8+ T cells (1.59-fold) and Granzyme B+ CD8 T cells (2.08-fold)' percentage for generating an adaptive response for systemic tumor suppression. The study indicated that the P-selectin antagonist, PSS, suppressed lung metastasis by inhibiting the infiltration of regulatory T cells (Treg) into the tumors.

2.
Mar Drugs ; 22(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921556

RESUMO

Tuberculosis, a persistent illness caused by Mycobacterium tuberculosis, remains a significant global public health challenge. The widespread use of anti-tuberculosis drugs has resulted in the emergence of drug-resistant strains, which complicates treatment efforts. Addressing this issue is crucial and hinges on the development of new drugs that can effectively target the disease. This involves identifying novel therapeutic targets that can disrupt the bacterium's survival mechanisms in various environments such as granulomas and lesions. Citrate lyase, essential for the survival of Mycobacterium species at lesion sites and in granulomatous conditions, is a potential target for the treatment of tuberculosis. This manuscript aimed to construct an efficient enzyme inhibitor screening platform using ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF MS). This system can accurately identify compounds with enzyme inhibitory activity from a library of marine terpenoids and phenolic compounds. Utilizing the screened herbal enzyme inhibitors as a starting point, we analyzed their chemical structures and skillfully built a library of marine compounds based on these structures. The results showed that all of the tested compounds from the phenolics library inhibited citrate lyase by more than 50%, and a significant portion of terpenoids also demonstrated inhibition, with these active terpenoids comprising over half of the terpenoids tested. The study underscores the potential of marine-derived phenolic and terpenoid compounds as potent inhibitors of citrate lyase, indicating a promising direction for future investigations in treating tuberculosis and associated disorders.


Assuntos
Antituberculosos , Inibidores Enzimáticos , Mycobacterium tuberculosis , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Antituberculosos/farmacologia , Antituberculosos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Cromatografia Líquida de Alta Pressão/métodos , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Organismos Aquáticos , Terpenos/farmacologia , Terpenos/química , Humanos , Fenóis/farmacologia , Fenóis/química , Cromatografia Líquida/métodos
3.
Int J Nanomedicine ; 18: 3711-3725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435153

RESUMO

Rationale: Reversing the hypoxic and immunosuppressive tumor microenvironment (TME) is crucial for treating malignant melanoma. Seeking a robust platform for the effective reversion of hypoxic and immunosuppressive TME may be an excellent solution to revolutionizing the current landscape of malignant melanoma treatment. Here, we demonstrated a transdermal and intravenous dual-administration paradigm. A tailor-made Ato/cabo@PEG-TK-PLGA NPs were administrated transdermally to melanoma with the help of a gel spray containing a skin-penetrating material borneol. Nanoparticles encased Ato and cabo were released and thereby reversed the hypoxic and immunosuppressive tumor microenvironment (TME). Methods: Ato/cabo@PEG-TK-PLGA NPs were synthesized through a self-assembly emulsion process, and the transdermal ability was assessed using Franz diffusion cell assembly. The inhibition effect on cell respiration was measured by OCR, ATP, and pO2 detection and in vivo photoacoustic (PA) imaging. The reversing of the immunosuppressive was detected through flow cytometry analysis of MDSCs and T cells. At last, the in vivo anti-tumor efficacy and histopathology, immunohistochemical analysis and safety detection were performed using tumor-bearing mice. Results: The transdermally administrated Ato/cabo@PEG-TK-PLGA NPs successfully spread to the skin surface of melanoma and then entered deep inside the tumor with the help of a gel spray and a skin puncturing material borneol. Atovaquone (Ato, a mitochondrial-respiration inhibitor) and cabozantinib (cabo, a MDSCs eliminator) were concurrently released in response to the intratumorally overexpressed H2O2. The released Ato and cabo respectively reversed the hypoxic and immunosuppressive TME. The reversed hypoxic TME offered sufficient O2 for the intravenously administrated indocyanine green (ICG, an FDA-approved photosensitizer) to produce adequate amount of ROS. In contrast, the reversed immunosuppressive TME conferred amplified systemic immune responses. Conclusion: Taken together, we developed a transdermal and intravenous dual-administration paradigm, which effectively reversed the hypoxic and immunosuppressive tumor microenvironment in the treatment of the malignant melanoma. We believe our study will open a new path for the effective elimination of the primary tumors and the real-time control of tumor metastasis.


Assuntos
Peróxido de Hidrogênio , Melanoma , Animais , Camundongos , Microambiente Tumoral , Melanoma/tratamento farmacológico , Imunossupressores , Melanoma Maligno Cutâneo
4.
Mar Drugs ; 21(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37233453

RESUMO

The incidence and mortality of cervical cancer in female malignancies are second only to breast cancer, which brings a heavy health and economic toll worldwide. Paclitaxel (PTX)-based regimens are the first-class choice; however, severe side effects, poor therapeutic effects, and difficulty in effectively preventing tumor recurrence or metastasis are unavoidable. Therefore, it is necessary to explore effective therapeutic interventions for cervical cancer. Our previous studies have shown that PMGS, a marine sulfated polysaccharide, exhibits promising anti-human papillomavirus (anti-HPV) effects through multiple molecular mechanisms. In this article, a continuous study identified that PMGS, as a novel sensitizer, combined with PTX exerted synergistic anti-tumor effects on cervical cancer associated with HPV in vitro. Both PMGS and PTX inhibited the proliferation of cervical cancer cells, and the combination of PMGS with PTX displayed significant synergistic effects on Hela cells. Mechanistically, PMGS synergizes with PTX by enhancing cytotoxicity, inducing cell apoptosis and inhibiting cell migration in Hela cells. Collectively, the combination of PTX and PMGS potentially provides a novel therapeutic strategy for cervical cancer.


Assuntos
Paclitaxel , Neoplasias do Colo do Útero , Feminino , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Células HeLa , Sulfatos/farmacologia , Linhagem Celular Tumoral , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Apoptose
5.
Int J Biol Macromol ; 216: 510-519, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35803409

RESUMO

The substituents and backbones are two main factors affecting immune activities of polysaccharides. In the present study, we firstly evaluated the immunostimulating effects of phosphorylated, sulfated, H-phosphonated and nitrated derivatives of low-molecular-weight polymannuronate (LPM) and polyguluronate (LPG) on splenocytes and peritoneal macrophages in vitro. The results showed that the phosphate group was the best substituent to enhance the immune activities, and LPG phosphate (LPGP) had much better activity than LPM phosphate (LPMP). Further studies showed that LPGP not only promoted the proliferation of mouse splenocytes in the presence of either LPS or Con A, but also acted as an excellent peritoneal macrophage activator to enhance the cell phagocytosis, energy metabolism, cytokines release and activities of intracellular enzymes. The studies in RAW264.7 cells revealed that LPGP activated the TBK1-IκBα-NF-κB and the TBK1-IRF3 pathway. Moreover, LPGP rescued the immune response in the Cyclophosphamide-treated mice in vivo. In conclusion, LPGP is a potential alginate-based biological response modifier (BRM).


Assuntos
Adjuvantes Imunológicos , Baço , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Imunidade , Macrófagos , Camundongos , NF-kappa B/metabolismo , Fosfatos/farmacologia , Polissacarídeos Bacterianos/farmacologia
6.
Carbohydr Polym ; 272: 118508, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34420753

RESUMO

The acidic polysaccharide ulvan extracted from the cell wall of the green algae Ulva is a good ligand for metal ions. Therefore, the adsorption properties of the U. clathrata derived ulvan toward Ca(II), Zn(II), Co(II), Cu(II), and Cr(III) were investigated in this study. The results demonstrate that ulvan exhibited good metal ion adsorption capacity at pH 7 and 50 °C. These adsorption processes can largely be explained by the Freundlich isotherm model and the pseudo-second-order kinetic model. The order of the adsorption capacity and affinity is as follows: Cr(III) > Cu(II) > Zn(II) ≈ Co(II) > Ca(II) and Cr(III) > Zn(II) > Co(II) ≈ Cu(II) > Ca(II). Furthermore, structural characterization revealed that the hydroxyl and carboxyl groups were the main functional groups involved in metal ion binding. Unlike the divalent metal ions, Cr(III) can trigger crosslinking of the ulvan chains, and its adsorption capacity was approximately 4.0 mmol/g.


Assuntos
Polissacarídeos , Ulva , Adsorção , Ulva/química , Purificação da Água
7.
J Cell Mol Med ; 25(15): 7157-7168, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34227740

RESUMO

Ageing is a crucial risk factor for the development of age-related cardiovascular diseases. Therefore, the molecular mechanisms of ageing and novel anti-ageing interventions need to be deeply studied. Alginate oligosaccharide (AOS) possesses high pharmacological activities and beneficial effects. Our study was undertaken to investigate whether AOS could be used as an anti-ageing drug to alleviate cardiac ageing. D-galactose (D-gal)-induced C57BL/6J ageing mice were established by subcutaneous injection of D-gal (200 mg·kg-1 ·d-1 ) for 8 weeks. AOS (50, 100 and 150 mg·kg-1 ·d-1 ) were administrated intragastrically for the last 4 weeks. As a result, AOS prevented cardiac dysfunction in D-gal-induced ageing mice, including partially preserved ejection fraction (EF%) and fractional shortening (FS%). AOS inhibited D-gal-induced up-regulation of natriuretic peptides A (ANP), brain natriuretic peptide (BNP) and ageing markers p53 and p21 in a dose-dependent manner. To further explore the potential mechanisms contributing to the anti-ageing protective effect of AOS, the age-related mitochondrial compromise was analysed. Our data indicated that AOS alleviated D-gal-induced cardiac ageing by improving mitochondrial biogenesis, maintaining the mitochondrial integrity and enhancing the efficient removal of impaired mitochondria. AOS also decreased the ROS production and oxidative stress status, which, in turn, further inhibiting cardiac mitochondria from being destroyed. Together, these results demonstrate that AOS may be an effective therapeutic agent to alleviate cardiac ageing.


Assuntos
Envelhecimento/metabolismo , Alginatos/farmacologia , Antioxidantes/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Envelhecimento/patologia , Animais , Galactose/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Renovação Mitocondrial , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeos Natriuréticos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
8.
Phytochemistry ; 188: 112817, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34052697

RESUMO

Pyrazinopyrimidine-type alkaloids bearing a pyrazino[1,2-a] pyrimidine moiety, often have different functional groups substituted at C-8' or C-2'/C-8', generally further forming unique spiro-/conjugated ring systems. Four undescribed pyrazinopyrimidine-type alkaloids, including three natural products pyrasplorines A-C and an artifact deg-pyrasplorine B, as well as a biogenetically related versicoloid A were discovered from the extract of a mangrove-derived fungus Apergillus verisicolor HDN11-84. Pyrasplorine A contains unique spiral-type skeleton (composed of cyclopentenone ring with the pyrazino[1,2-a] pyrimidine core) which is unprecedented in pyrazinopyrimidine-type alkaloids. The deg-pyrasplorine B could be spontaneously converted from pyrasplorine B in mild conditions. Their structures including absolute configurations were elucidated based on NMR spectroscopic analysis, computational calculations and Marfey's method. The absolute configuration of versicoloid A was re-assigned in this study. All the isolated compounds are non-cytotoxic and deg-pyrasplorine B showed anti-influenza A virus H1N1 activity with the IC50 of 50 µM.


Assuntos
Alcaloides , Vírus da Influenza A Subtipo H1N1 , Alcaloides/farmacologia , Aspergillus , Fungos , Estrutura Molecular , Pteridinas
9.
J Biomed Nanotechnol ; 17(2): 169-195, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33785090

RESUMO

In recent years, emerging immunotherapy has been included in various malignant tumor treatment standards. Temperature has been considered to affect different pathophysiological reactions such as inflammation and cancer for a long time. However, in tumor immunology research, temperature is still rarely considered a significant variable. In this review, we discuss the effects of room temperature, body temperature, and the local tumor temperature on the tumor immune microenvironment from multiple levels and perspectives, and we discuss changes in the body's local and whole-body temperature under tumor conditions. We analyze the current use of ablation treatment-the reason for the opposite immune effect. We should pay more attention to the therapeutic potential of temperature and create a better antitumor microenvironment that can be combined with immunotherapy.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Imunoterapia , Neoplasias/terapia , Temperatura
10.
Mar Drugs ; 18(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036172

RESUMO

Leptolyngbya, a well-known genus of cyanobacteria, is found in various ecological habitats including marine, fresh water, swamps, and rice fields. Species of this genus are associated with many ecological phenomena such as nitrogen fixation, primary productivity through photosynthesis and algal blooms. As a result, there have been a number of investigations of the ecology, natural product chemistry, and biological characteristics of members of this genus. In general, the secondary metabolites of cyanobacteria are considered to be rich sources for drug discovery and development. In this review, the secondary metabolites reported in marine Leptolyngbya with their associated biological activities or interesting biosynthetic pathways are reviewed, and new insights and perspectives on their metabolic capacities are gained.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/metabolismo , Cianobactérias/química , Cianobactérias/classificação , Organismos Aquáticos , Descoberta de Drogas
11.
Bioorg Chem ; 104: 104246, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911197

RESUMO

Cryptotanshinone (1), a major bioactive constituent in the traditional Chinese medicinal herb Dan-Shen Salvia miltiorrhiza Bunge, has been reported to possess remarkable pharmacological activities. To improve its bioactivities and physicochemical properties, in the present study, cryptotanshinone (1) was biotransformed with the fungus Cunninghamella elegans AS3.2028. Three oxygenated products (2-4) at C-3 of cryptotanshinone (1) were obtained, among them 2 was a new compound. Their structures were elucidated by comprehensive spectroscopic analysis including HRESIMS, NMR and ECD data. All of the biotransformation products (2-4) were found to inhibit significantly lipopolysaccharide-induced nitric oxide production in BV2 microglia cells with the IC50 values of 0.16-1.16 µM, approximately 2-20 folds stronger than the substrate (1). These biotransformation products also displayed remarkably improved inhibitory effects on the production of inflammatory cytokines (IL-1ß, IL-6, TNF-α, COX-2 and iNOS) in BV-2 cells via targeting TLR4 compared to substrate (1). The underlying mechanism of 2 was elucidated by comparative transcriptome analysis, which suggested that it reduced neuroinflammatory mainly through mitogen-activated protein kinase (MAPK) signaling pathway. Western blotting results revealed that 2 downregulated LPS-induced phosphorylation of JNK, ERK, and p38 in MAPK signaling pathway. These findings provide a basal material for the discovery of candidates in treating Alzheimer's disease.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores da Colinesterase/farmacologia , Cunninghamella/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Fenantrenos/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Acetilcolinesterase/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Biotransformação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Cunninghamella/química , Relação Dose-Resposta a Droga , Electrophorus , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estrutura Molecular , Oxigênio/metabolismo , Fenantrenos/química , Fenantrenos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Receptor 4 Toll-Like/metabolismo
12.
Carbohydr Polym ; 247: 116728, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829850

RESUMO

Polysaccharides have aroused considerable interest due to their diverse biological activities and low toxicity. In this study, we evaluated the effect of marine polysaccharide sulfated polymannuroguluronate (TGC161) on the leukopenia induced by chemotherapy. It is found that TGC161 ameliorates the leukopenia. Besides, TGC161 would promote CD4+ T cell differentiation and maturation in the thymus, but does not have a significant effect on precursor cells in bone marrow. Furthermore, TGC161 inhibits CD4+ T cell apoptosis in vitro. Collectively, our findings offer a natural and harmless polysaccharide to ameliorate leukopenia.


Assuntos
Apoptose/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Leucopenia/prevenção & controle , Polissacarídeos/farmacologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Leucopenia/imunologia , Leucopenia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
BMC Complement Med Ther ; 20(1): 243, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758223

RESUMO

BACKGROUND: Lung cancer has the highest morbidity and mortality in the world and novel treatment strategies are still needed. Haimufang decoction (HMF) is a patented clinical prescription of traditional Chinese medicine for lung cancer treatment. HMF is composed of four herbs and has been applied clinically in advanced cancer patients. However, its therapeutic mechanisms are still unclear. This study aims to elucidate the possible mechanisms of HMF for the treatment of lung cancer. METHODS: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was applied for evaluating the proliferative effect of HMF in lung cancer cells and monocyte macrophage RAW264.7 cells. Flow cytometer was used to detect the effects of HMF on cell cycle and apoptosis, and western blotting was employed to explore the potential apoptotic mechanisms of HMF on lung cancer cells. For immunomodulatory effect, co-culture system was used to detect the activation of macrophage RAW264.7 cells when treated with HMF, and neutral red assay was used to measure the effect of HMF on the phagocytosis of the activated macrophages. Enzyme linked immunosorbent assay, flow cytometer, and immunofluorescence staining method were employed for the investigation on the underlying mechanisms of the immunomodulatory effect on RAW264.7 induced by HMF. RESULTS: HMF inhibited the proliferation, induced S phase cell cycle arrest, and stimulated apoptosis in lung cancer NCI-H1975 cells, while had negligible cytotoxicity on macrophage RAW264.7 cells. Moreover, HMF could activate macrophage RAW264.7 cells and promote the inhibition activity of RAW264.7 cells against lung cancer cells. And also, HMF activated macrophages and increased their phagocytic activity in a concentration-dependent manner. HMF increased the expression of macrophage activation marker CD40, the level of nitric oxide, the generation of intracellular reactive oxygen species, as well as M1 macrophages cytokines including tumor necrosis factor-α, interleukin-1ß, interleukin 12 p70, and interleukin 6. Further investigation showed that HMF induced M1 but not M2 phenotype polarization in RAW264.7 cells. CONCLUSIONS: HMF can mainly exert anticancer activity via (1) cytotoxicity to human lung cancer cells by proliferation inhibition, cell cycle arrest, and apoptosis induction; and also via (2) immunomodulation via macrophage cells activation and M1 phenotype polarization induction.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Células RAW 264.7
14.
Eur J Med Chem ; 200: 112365, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32460113

RESUMO

Nanomedicines have shown success in cancer therapy in recent years because of their excellent solubility in aqueous solution and drug accumulation through controlled release in tumor tissues, but the preparation of most nanomedicines still requires ionic materials, surfactants or the amphiphilic structure to maintain nanoparticle stability and function. In this study, we developed a couple of novel dually hydrophobic prodrugs (DHPs) by combining two hydrophobic compounds through different linkers and elaborated their self-assembly mechanisms by virtue of computational simulation. Importantly, without using any excipients, FL-2 NPs exhibited significantly prolonged retention in blood circulation and displayed a remarkable anti-tumor effect at very low concentration in vivo. Both DHPs consisted of camptothecin structural analogue(FL118) and a marine natural product (ES-285). Comparative experiments proved that these compounds could quickly form nanoparticles by way of simple preparation and remained relatively stable for long periods in PBS. FL-2 NPs linked with a disulphide bond could rapidly release bioactive FL118 after being triggered by endogenous reductive stimulus to exert anti-cancer effects. Overall, this study provides a new strategy for design of therapeutic nanomedicines consisting of dually hydrophobic molecules for cancer therapy.


Assuntos
Camptotecina/análogos & derivados , Interações Hidrofóbicas e Hidrofílicas , Nanomedicina/métodos , Nanopartículas/química , Neoplasias/terapia , Pró-Fármacos/química , Animais , Benzodioxóis , Cromonas , Dissulfetos , Estabilidade de Medicamentos , Humanos , Indolizinas , Lipídeos
15.
Int J Biol Macromol ; 157: 75-82, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32344076

RESUMO

Marine green algae are valuable sources of diverse health-promoting bioactive components. Ulvan is suitable for biological applications due to its unique structure and numerous bioactivities. Here, the complex structure of ulvan from Ulva pertusa was analyzed using specific ulvan lyase degradation, MS, and NMR detection. Its structure mainly consists of →4)-ß-d-GlcA-(1 â†’ 4)-α-l-Rha3S-(1 â†’ and →4)-ß-d-Xyl-(1 â†’ 4)-α-l-Rha3S-(1 â†’ repeating units. Small amounts of →4)-α-l-IdoA-(1 â†’ 4)-α-l-Rha3S-(1 â†’ unit also exist. In addition, a minor number of branches, a single GlcA, and a long branch containing GlcA-Glc were linked to Rha3S. The antiviral activity of the ulvan and its degraded fragments were further investigated. Ulvan (1068.2 kDa) and ulvan-F1 (38.5 kDa) with relatively high molecular weight showed potency of inhibiting the infection and replication of vesicular stomatitis virus (VSV) at 100 µg/mL, the inhibition rate of VSV replication was 40.75% and 40.13%, respectively. These results indicated that ulvan has potential as a functional agent.


Assuntos
Antivirais/química , Antivirais/farmacologia , Polissacarídeo-Liases/metabolismo , Polissacarídeos/química , Polissacarídeos/farmacologia , Ulva/enzimologia , Vesiculovirus/efeitos dos fármacos , Antivirais/metabolismo , Sequência de Carboidratos , Peso Molecular , Polissacarídeos/metabolismo , Vesiculovirus/fisiologia , Replicação Viral/efeitos dos fármacos
16.
Mar Drugs ; 18(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110865

RESUMO

Aspergillus terreus has been reported to produce many secondary metabolites that exhibit potential bioactivities, such as antibiotic, hypoglycemic, and lipid-lowering activities. In the present study, two new thiodiketopiperazines, emestrins L (1) and M (2), together with five known analogues (3-7), and five known dihydroisocoumarins (8-12), were obtained from the marine-derived fungus Aspergillus terreus RA2905. The structures of the new compounds were elucidated by analysis of the comprehensive spectroscopic data, including high-resolution electrospray ionization mass spectrometry (HRESIMS), one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR), and electronic circular dichroism (ECD) data. This is the first time that the spectroscopic data of compounds 3, 8, and 9 have been reported. Compound 3 displayed antibacterial activity against Pseudomonas aeruginosa (minimum inhibitory concentration (MIC) = 32 µg/mL) and antifungal activity against Candida albicans (MIC = 32 µg/mL). In addition, compound 3 exhibited an inhibitory effect on protein tyrosine phosphatase 1 B (PTP1B), an important hypoglycemic target, with an inhibitory concentration (IC)50 value of 12.25 µM.


Assuntos
Antibacterianos/farmacologia , Aspergillus/química , Animais , Candida albicans/efeitos dos fármacos , Cumarínicos/química , Testes de Sensibilidade Microbiana , Oceanos e Mares , Piperazinas/química , Pseudomonas aeruginosa/efeitos dos fármacos
17.
Int Heart J ; 61(1): 160-168, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31956132

RESUMO

Pulmonary arterial hypertension (PAH) is a serious and fatal cardiovascular disorder characterized by increased pulmonary vascular resistance and progressive pulmonary vascular remodeling. The underlying pathological mechanisms of PAH are multi-factorial and multi-cellular. Alginate oligosaccharide (AOS), which is produced by depolymerizing alginate, shows better pharmacological activities and beneficial effects. The present study was undertaken to investigate the effects and potential mechanisms of AOS-mediated alleviation of pulmonary hypertension. Pulmonary hypertension was induced in Sprague-Dawley rats by a single intraperitoneal injection of monocrotaline (MCT; 60 mg/kg). Five weeks after the injection of MCT, AOS (5, 10, and 20 mg·kg-1·d-1) was injected intraperitoneally for another three weeks. The results showed that AOS prevented the development of MCT-induced pulmonary hypertension and right ventricular hypertrophy in a dose-dependent manner. AOS treatment also prevented MCT-induced pulmonary vascular remodeling via inhibition of the TGF-ß1/p-Smad2 signaling pathway. Furthermore, AOS treatment downregulated the expression of malondialdehyde, nicotinamide adenine dinucleotide phosphate oxidase, and pro-inflammatory cytokines, decreased macrophage infiltration, and upregulated the expression of anti-inflammatory cytokines. These findings indicate that AOS exerts anti-oxidative and anti-inflammatory effects in pulmonary arteries, which may contribute to the alleviation of pulmonary hypertension and pulmonary vascular remodeling.


Assuntos
Alginatos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Hipertrofia Ventricular Direita/tratamento farmacológico , Monocrotalina/efeitos adversos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Alginatos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/metabolismo , Injeções Intraperitoneais , Masculino , Malondialdeído/metabolismo , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Distribuição Aleatória , Ratos , Remodelação Vascular/efeitos dos fármacos
18.
J Nat Prod ; 83(3): 617-625, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31916778

RESUMO

A thiazole-containing cyclic depsipeptide with 11 amino acid residues, named pagoamide A (1), was isolated from laboratory cultures of a marine Chlorophyte, Derbesia sp. This green algal sample was collected from America Samoa, and pagoamide A was isolated using guidance by MS/MS-based molecular networking. Cultures were grown in a light- and temperature-controlled environment and harvested after several months of growth. The planar structure of pagoamide A (1) was characterized by detailed 1D and 2D NMR experiments along with MS and UV analysis. The absolute configurations of its amino acid residues were determined by advanced Marfey's analysis following chemical hydrolysis and hydrazinolysis reactions. Two of the residues in pagoamide A (1), phenylalanine and serine, each occurred twice in the molecule, once in the d- and once in the l-configuration. The biosynthetic origin of pagoamide A (1) was considered in light of other natural products investigations with coenocytic green algae.


Assuntos
Produtos Biológicos/química , Clorófitas/química , Depsipeptídeos/química , Samoa Americana , Aminoácidos , Animais , Produtos Biológicos/isolamento & purificação , Depsipeptídeos/isolamento & purificação , Feminino , Estrutura Molecular , Ratos , Espectrometria de Massas em Tandem
19.
Carbohydr Polym ; 229: 115497, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826447

RESUMO

Rhamnan-rich sulfated polysaccharides extracted from green algae (ulvan) constitute potentially useful natural materials for drug development. However, the characterization of their complex structures poses a challenge for their application. In this study, the structure of ulvan extracted from Ulva clathrata was analyzed with the assistance of an ulvan lyase belonging to the PL25 family. According to mass spectrometry and nuclear magnetic resonance analysis of the degraded oligosaccharides, the backbone of such a polysaccharide mainly consisted of →4)-ß-d-GlcA-(1→4)-α-l-Rha3S-(1→ and →4)-ß-d-Xyl-(1→4)-α-l-Rha3S-(1→ disaccharide repeating units, and the ratio is approximately 4:1. In addition, about 4% of the xylose moieties bear sulfate groups. Minor amounts of branches containing hexose and unsaturated glucuronic acid were found during the sequence analysis of hexa- to octasaccharides. These results indicated the presence of a long branch in the ulvan. The clarification of the detailed structure provides a foundation for ulvan modification and its structure-activity relationship studies.


Assuntos
Polissacarídeo-Liases/metabolismo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Ulva/química , Fenômenos Químicos , Polissacarídeos/metabolismo
20.
Invest New Drugs ; 38(2): 311-320, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31087223

RESUMO

The Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays central roles in cancer cell growth and survival. Drug repurposing strategies have provided a valuable approach for developing antitumor drugs. Zelnorm (tegaserod maleate) was originally designed as an agonist of 5-hydroxytryptamine 4 receptor (5-HT4R) and approved by the FDA for treating irritable bowel syndrome with constipation (IBS-C). Through the use of a high-throughput drug screening system, Zelnorm was identified as a JAK/STAT3 signaling inhibitor. Moreover, the inhibition of STAT3 phosphorylation by Zelnorm was independent of its original target 5-HT4R. Zelnorm could cause G1 cell cycle arrest, induce cell apoptosis and inhibit the growth of a variety of cancer cells. The present study identifies Zelnorm as a novel JAK/STAT3 signaling inhibitor and reveals a new clinical application of Zelnorm upon market reintroduction.


Assuntos
Antineoplásicos/uso terapêutico , Indóis/uso terapêutico , Janus Quinases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Fator de Transcrição STAT3/antagonistas & inibidores , Agonistas do Receptor 5-HT4 de Serotonina/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Indóis/farmacologia , Janus Quinases/metabolismo , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores 5-HT4 de Serotonina/genética , Fator de Transcrição STAT3/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA