Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 206: 108215, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029619

RESUMO

SPX (SYG/PHO81/XPR1) domain genes have been reported to play vital roles in the Phosphorus (Pi) signaling network in Arabidopsis thaliana and rice. However, the functions of SPX proteins in wheat remain largely unknown. In this study, the full-length cDNA sequence of the TaSPX3 gene was cloned from the common wheat variety Zhengmai9023. The expression of TaSPX3 was up-regulated in eight different genotypes of wheat under low phosphorus (LP) stress, indicating that TaSPX3 responds to Pi limitation in multiple wheat genotypes. The transcription level of TaSPX3 was also detected in the absence of seven different elements, showing certain specificity for Pi deficiency in wheat. Over expressing TaSPX3 in Arabidopsis can alleviate Pi deficiency symptoms at the seedling stage and promote the growth of plant, and advance the flowering period at the adult stage. The expression of 7 genes associated with the Pi starvation signal pathways was analyzed using qRT-PCR. The results showed that TaSPX3, along with AtSPX1, AtRNS1, AtIPS1, AtPAP2, AtPAP17 and AtAT4, were all induced by Pi deficiency. This study reveals that the TaSPX3 gene in wheat is involved in the response to phosphorus stress and may affect shoot phosphorus levels through AT4 or PAPs-related pathways. Overall, our study provides new insights into the regulation of plant response under LP conditions and the molecular mechanism underlying the role of the wheat SPX gene in coping with LP stress.


Assuntos
Arabidopsis , Fósforo , Fósforo/metabolismo , Arabidopsis/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo
2.
Waste Manag ; 159: 102-113, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746047

RESUMO

The use of biochar can accelerate the vermicomposting process of dewatered sludge. However, the underlying mechanism of vermicompost maturity with biochar is still unclear. This study investigated the effect of biochar on sludge maturation during vermicomposting by analyzing the spectroscopic characteristics of dissolved organic matter. For this, dewatered sludge mixed with and without 5 % biochar were separately vermicomposted. The results showed that the biochar could significantly increase the biomass of earthworms as well as the activity and abundances of bacteria and eukaryotes (P < 0.05) during vermicomposting of sludge. The addition of biochar resulted in a 23.35 % increase in the ratio of absorbances at wavelengths of 250 nm and 365 nm (E250/E365), and a 20.50 % decrease in aromatic proteins of sludge during vermicomposting, compared to the control. The ratio of fulvic acid to humic acid contents rapidly increased from 10 to 15 days in biochar added treatment, which was earlier than that in the control. Compared to control, the biochar addition enhanced the contents of fulvic acid and humic acid in sludge vermicompost by 79.97 % and 91.54 %, respectively. During vermicomposting, the DOM maturated parameter displayed stronger correlation (P < 0.05) between each other in the treatment with biochar, rather than the control. This study suggests that the biochar addition significantly modifies the degradation pathway of dissolved organic matter, thus promoting sludge maturation during vermicomposting.


Assuntos
Substâncias Húmicas , Oligoquetos , Animais , Substâncias Húmicas/análise , Solo/química , Esgotos , Matéria Orgânica Dissolvida
3.
Waste Manag ; 143: 116-124, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35240447

RESUMO

Vermicomposting is characterized by transforming organic waste into nutrient-rich organic fertilizer through the action of different earthworms and microorganisms. Although vermicomposting can recycle the excess sludge in an eco-friendly manner, the longer stabilization period has limited its industrial application. The present study sought to investigate a novel operation process of vermicomposting combined with room drying (VD) to improve the stabilization efficiency of dewatered sludge. Subsequently, the performance and efficiency of vermicomposting without room drying, room dry without vermicomposting, and VD for sludge stabilization were compared simultaneously. In the VD process, the sludge water content reduced from 60.8% to 1.64%, showing the highest electrical conductivity and lowest organic matter content, making the humus substances abundant in the final product. Moreover, the vermicomposting achieved the highest ammonia and nitrate content in final product. Additionally, the bacterial and eukaryotic abundances in the VD product were significantly higher (P < 0.01, i.e., 15.6% and 180.7%) than the vermicomposting product. The specific bacterial genus of Glutamicibacter, Chitinibacter, and Acidobacteria was dominated in the VD product. The Partial least squares-Path modeling (PLS-PM) results revealed that the maturity degree in the VD product was significantly associated with microbial component, and the organic form was strongly driven by the change in the physicochemical properties, which was contradictory to vermicomposting model. The study suggests that the VD process could shorten the vermicomposting period by rapidly accelerating the physical, chemical, and biological stabilization of sludge.


Assuntos
Oligoquetos , Esgotos , Animais , Bactérias , Estudos de Viabilidade , Esgotos/química , Solo
4.
Sci Total Environ ; 828: 154496, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35288128

RESUMO

Biochar can accelerate the degradation and mineralization of organic matter during vermicomposting of sludge and the resulted vermicompost is termed as vermi-char containing active enzymes and microorganisms. However, the mechanisms by which biochars affect vermicomposting of the dewatered sludge during gut digestion of earthworms remain unclear. This study aimed to investigate the effects of biochar on the degradation pathways of organic matter and the involved active microorganisms in dewatered sludge during gut digestion of earthworms. The earthworms Eisenia fetida were fed on three sludge substrates; 1) sludge mixed with 5% corncob biochar, 2) sludge mixed 5% rice husk biochar, and 3) sludge without biochar. The results showed that dissolved organic carbon significantly decreased by 5.65%-21.81% after the 5-day gut digestion of earthworms (P < 0.05) and that biochar addition could accelerate the decomposition of aromatic protein-like substances. Contrarily, the nitrate in earthworms casting with biochars significantly increased by 47.32%-122.64% (P < 0.05) compared with the control. The numbers of active bacteria and eukaryotes in earthworm castings with biochars significantly enhanced by 1.34-1.45 times and 0.45-5.91 times, respectively, than the control (P < 0.05). Active Actinobacteria and Bacteroidetes dominated the castings with biochars significantly enriched by 76.18%-88.83% and 4.02%-18.59% (P < 0.05), respectively, compared to control. As for eukaryotes, the biochars amendment increased Cercozoa abundance by 114.23%-136.31% but decreased Annelida by 55.61%-75.88% in the castings. The partial least squares path model revealed that the biochars could change the content and structure of organic matter in earthworm castings during vermicomposting of sludge by affecting environmental factors, microbial abundance, and microbial community composition.


Assuntos
Oligoquetos , Animais , Bactérias , Carvão Vegetal/metabolismo , Digestão , Eucariotos , Oligoquetos/metabolismo , Esgotos , Solo
5.
Chemosphere ; 280: 130609, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34162071

RESUMO

Vermi-filter combined with wetland plant (VFP) is an eco-friendly and sustainable approach for recycling of excess sludge by joint action of earthworms, wetland plants and microorganisms. However, the effects of wetland plants on sludge decomposition and involved microorganisms are remain unclear. This study investigated the effects of wetland plants on the treatment performance of VFP for concentrated excess sludge and microbial community distribution inside the VFP. The wetland plants' species of Acorus calamus and Epipremnum aureum were separately planted on the surface layer of vermi-reactors by earthworms Eisenia fetida. Results showed that the growth rate of E. fetida in VFPs significantly (P < 0.001) increased by 75%, compared to VF. In addition, the removal rates of total solids and chemical oxygen demand in VFPs could reach 61%-79% and 36%-68%, respectively, displaying a better performance of sludge reduction than in the VF. The surface layer of VFPs was a hotspot for degradation of organic matter, where bacteria played an important role in bio-decomposition rather than eukaryotes. Moreover, wetland plants could significantly (P < 0.001) enrich the eukaryotic population, rather than bacterial population. Compared to the VF, the wetland plants could promote the diversities of bacterial community in VFPs, showing specific functioned genus in different layers. In contrast, A. calamus could be a better candidate than E. aureum in the VFP. This study suggests that the inoculation of wetland plants can improve the performance for treating concentrated excess sludge by changing the biomass of earthworms and the structure of microbial community within the VFP.


Assuntos
Acorus , Microbiota , Oligoquetos , Animais , Esgotos , Áreas Alagadas
6.
New Phytol ; 210(2): 525-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26682704

RESUMO

Cytochromes P450 (CYPs) play a key role in generating the structural diversity of terpenoids, the largest group of plant natural products. However, functional characterization of CYPs has been challenging because of the expansive families found in plant genomes, diverse reactivity and inaccessibility of their substrates and products. Here we present the characterization of two CYPs, CYP76AH3 and CYP76AK1, which act sequentially to form a bifurcating pathway for the biosynthesis of tanshinones, the oxygenated diterpenoids from the Chinese medicinal plant Danshen (Salvia miltiorrhiza). These CYPs had similar transcription profiles to that of the known gene responsible for tanshinone production in elicited Danshen hairy roots. Biochemical and RNA interference studies demonstrated that both CYPs are promiscuous. CYP76AH3 oxidizes ferruginol at two different carbon centers, and CYP76AK1 hydroxylates C-20 of two of the resulting intermediates. Together, these convert ferruginol into 11,20-dihydroxy ferruginol and 11,20-dihydroxy sugiol en route to tanshinones. Moreover, we demonstrated the utility of these CYPs by engineering yeast for heterologous production of six oxygenated diterpenoids, which in turn enabled structural characterization of three novel compounds produced by CYP-mediated oxidation. Our results highlight the incorporation of multiple CYPs into diterpenoid metabolic engineering, and a continuing trend of CYP promiscuity generating complex networks in terpenoid biosynthesis.


Assuntos
Abietanos/metabolismo , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/metabolismo , Salvia miltiorrhiza/metabolismo , Abietanos/química , Cromatografia Líquida , Sistema Enzimático do Citocromo P-450/química , Regulação da Expressão Gênica de Plantas , Engenharia Genética , Espectrometria de Massas , Simulação de Acoplamento Molecular , Proteínas de Plantas/química , Saccharomyces cerevisiae/metabolismo , Salvia miltiorrhiza/enzimologia , Salvia miltiorrhiza/genética , Homologia Estrutural de Proteína
7.
Chem Biol Drug Des ; 86(6): 1438-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26072970

RESUMO

Homology modeling has been applied to fill in the gap in experimental G protein-coupled receptors structure determination. However, achievement of G protein-coupled receptors homology models with ligand selectivity remains challenging due to structural diversity of G protein-coupled receptors. In this work, we propose a novel strategy by integrating pharmacophore and membrane molecular dynamics (MD) simulations to improve homology modeling of G protein-coupled receptors with ligand selectivity. To validate this integrated strategy, the A2A adenosine receptor (A2A AR), whose structures in both active and inactive states have been established, has been chosen as an example. We performed blind predictions of the active-state A2A AR structure based on the inactive-state structure and compared the performance of different refinement strategies. The blind prediction model combined with the integrated strategy identified ligand-receptor interactions and conformational changes of key structural elements related to the activation of A2 A AR, including (i) the movements of intracellular ends of TM3 and TM5/TM6; (ii) the opening of ionic lock; (iii) the movements of binding site residues. The integrated strategy of pharmacophore with molecular dynamics simulations can aid in the optimization in the identification of side chain conformations in receptor models. This strategy can be further investigated in homology modeling and expand its applicability to other G protein-coupled receptor modeling, which should aid in the discovery of more effective and selective G protein-coupled receptor ligands.


Assuntos
Receptor A2A de Adenosina/química , Receptores Acoplados a Proteínas G/química , Agonistas do Receptor A2 de Adenosina/química , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Sítios de Ligação , Desenho de Fármacos , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Receptor A2A de Adenosina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...