Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 672: 805-813, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875836

RESUMO

Short-side-chain perfluorosulfonic acid (SSC-PFSA) ionomers with high ion-exchange-capacity are promising candidates for high-temperature proton exchange membranes (PEMs) and catalyst layer (CL) binders. The solution-casting method determines the importance of SSC-PFSA dispersion characteristics in shaping the morphology of PEMs and CLs. Therefore, a thorough understanding of the chain behavior of SSC-PFSA in dispersions is essential for fabricating high-quality PEMs and CLs. In this study, we have employed multiple characterization techniques, including dynamic light scatting (DLS), small-angle X-ray scattering (SAXS), and cryo-transmission electron microscope (Cryo-TEM), to fully study the chain aggregation behaviors of SSC-PFSA in water-ethanol solvents and elucidate the concentration-dependent self-assembly process. In dilute dispersions (2 mg/mL), SSC-PFSA assembles into mono-disperse rod-like aggregates, featuring a twisted fluorocarbon backbone that forms a hydrophobic stem, and the sulfonic acid side chains extending outward to suit the hydrophilic environment. As the concentration increases, the radius of rod particles increases from 1.47 to 1.81 nm, and the mono-disperse rod particles first form a "end-to-end" configuration that doubles length (10 mg/mL), and then transform into a swollen network structure in semi-dilute dispersion (20 mg/mL). This work provides a well-established structure model for SSC-PFSA dispersions, which is the key nanostructure to be inherited by PEMs.

2.
Adv Sci (Weinh) ; 10(30): e2303969, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37653601

RESUMO

Hydrogen energy as the next-generation clean energy carrier has attracted the attention of both academic and industrial fields. A key limit in the current stage is the operation temperature of hydrogen fuel cells, which lies in the slow development of high-temperature and high-efficiency proton exchange membranes. Currently, much research effort has been devoted to this field, and very innovative material systems have been developed. The authors think it is the right time to make a short summary of the high-temperature proton exchange membranes (HT-PEMs), the fundamentals, and developments, which can help the researchers to clearly and efficiently gain the key information. In this paper, the development of key materials and optimization strategies, the degradation mechanism and possible solutions, and the most common morphology characterization techniques as well as correlations between morphology and overall properties have been systematically summarized.

3.
Sci Adv ; 9(17): eadh1386, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37126562

RESUMO

The perfluorosulfonic acid (PFSA) proton exchange membrane (PEM) is the key component for hydrogen fuel cells (FCs). We used in situ synchrotron scattering to investigate the PEM morphology evolution and found a "stream-reservoir" morphology, which enables efficient proton transport. The short-side-chain (SSC) PFSA PEM is fabricated under the guidance of morphology optimization, which delivered a proton conductivity of 193 milliSiemens per centimeter [95% relativity humidity (RH)] and 40 milliSiemens per centimeter (40% RH) at 80°C. The improved glass transition temperature, water permeability, and mechanical strength enable high-temperature low-humidity FC applications. Performance improvement by 82.3% at 110°C and 25% RH is obtained for SSC-PFSA PEM FCs compared to Nafion polymer PEM devices. The insights in chain conformation, packing mechanism, crystallization, and phase separation of PFSAs build up the structure-property relationship. In addition, SSC-PFSA PEM is ideal for high-temperature low-humidity FCs that are needed urgently for high-power-density and heavy-duty applications.

4.
Materials (Basel) ; 14(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34947468

RESUMO

Benefiting from its large specific surface with functional -OH/-F groups, Ti3C2Tx, a typical two-dimensional (2D) material in the recently developed MXene family, was synthesized and used as a filler to improve the properties of the short side-chain (SSC) perfluorosulfonic acid (PFSA) proton exchange membrane. It is found that the proton conductivity is enhanced by 15% while the hydrogen permeation is reduced by 45% after the addition of 1.5 wt% Ti3C2Tx filler into the SSC PFSA membrane. The improved proton conductivity of the composite membrane could be associated with the improved proton transport environment in the presence of the hydrophilic functional groups (such as -OH) of the Ti3C2Tx filler. The significantly reduced hydrogen permeation could be attributed to the incorporation of the impermeable Ti3C2Tx 2D fillers and the decreased hydrophilic ionic domain spacing examined by the small angle X-ray scattering (SAXS) for the composite membrane. Furthermore, improved thermo-mechanical properties of the SSC/Ti3C2Tx composite membrane were measured by dynamic mechanical analyzer (DMA) and tensile strength testing. The demonstrated higher proton conductivity, lower hydrogen permeation, and improved thermo-mechanical stability indicate that the SSC/Ti3C2Tx composite membranes could be a potential membrane material for PEM fuel cells operating above the water boiling temperature.

5.
Nanomaterials (Basel) ; 7(8)2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28758973

RESUMO

The electrode based on cerium oxide (CeO2) nanorods embedded in nickel hydroxide (Ni(OH)2) matrix were prepared and used for detecting glucose non-enzymatically. The materials were characterized by X-ray diffraction, transmission electron microscopy (TEM), and so on. The results indicate that the response of CeO2/Ni(OH)2 nanocomposite are significantly improved due to the synergetic effect between CeO2 and Ni(OH)2. The optimum CeO2/Ni(OH)2 nanocomposite electrode exhibits a detection range from 2 µM to 6.62 mM, a sensitivity of 594 µA mM-1 cm-2, an estimated detection limit of 1.13 µM, and a response time less than 5 s. In addition, this biosensor also shows good selectivity, long term stability, and accurate measurement in juice on sale.

6.
Nanomaterials (Basel) ; 6(9)2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-28335287

RESUMO

Copper oxide (CuO)-decorated cerium oxide (CeO2) nanoparticles were synthesized and used to detect glucose non-enzymatically. The morphological characteristics and structure of the nanoparticles were characterized through transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The sensor responses of electrodes to glucose were investigated via an electrochemical method. The CuO/CeO2 nanocomposite exhibited a reasonably good sensitivity of 2.77 µA mM-1cm-2, an estimated detection limit of 10 µA, and a good anti-interference ability. The sensor was also fairly stable under ambient conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...