Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17684, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952979

RESUMO

Background: FAR1/FHY3 transcription factors are derived from transposase, which play important roles in light signal transduction, growth and development, and response to stress by regulating downstream gene expression. Although many FAR1/FHY3 members have been identified in various species, the FAR1/FHY3 genes in maize are not well characterized and their function in drought are unknown. Method: The FAR1/FHY3 family in the maize genome was identified using PlantTFDB, Pfam, Smart, and NCBI-CDD websites. In order to investigate the evolution and functions of FAR1 genes in maize, the information of protein sequences, chromosome localization, subcellular localization, conserved motifs, evolutionary relationships and tissue expression patterns were analyzed by bioinformatics, and the expression patterns under drought stress were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Results: A total of 24 ZmFAR members in maize genome, which can be divided into five subfamilies, with large differences in protein and gene structures among subfamilies. The promoter regions of ZmFARs contain abundant abiotic stress-responsive and hormone-respovensive cis-elements. Among them, drought-responsive cis-elements are quite abundant. ZmFARs were expressed in all tissues detected, but the expression level varies widely. The expression of ZmFARs were mostly down-regulated in primary roots, seminal roots, lateral roots, and mesocotyls under water deficit. Most ZmFARs were down-regulated in root after PEG-simulated drought stress. Conclusions: We performed a genome-wide and systematic identification of FAR1/FHY3 genes in maize. And most ZmFARs were down-regulated in root after drought stress. These results indicate that FAR1/FHY3 transcription factors have important roles in drought stress response, which can lay a foundation for further analysis of the functions of ZmFARs in response to drought stress.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição , Zea mays , Zea mays/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
PeerJ ; 11: e15312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151290

RESUMO

Background: Trihelix transcription factors play important roles in triggering plant growth and imparting tolerance against biotic and abiotic stresses. However, a systematical analysis of the trihelix transcription factor family under heat and drought stresses in maize has not been reported. Methods: PlantTFDB and TBtools were employed to identify the trihelix domain-containing genes in the maize genome. The heat-regulated transcriptome data for maize were obtained from NCBI to screen differentially expressed ZmTHs genes through statistical analysis. The basic protein sequences, chromosomal localization, and subcellular localization were analyzed using Maize GDB, Expasy, SOMPA, TBtools, and Plant-mPLoc. The conserved motifs, evolutionary relationships, and cis-elements, were analyzed by MEME, MEGA7.0 and PlantCARE software, respectively. The tissue expression patterns of ZmTHs and their expression profiles under heat and drought stress were detected using quantitative real-time PCR (qRT-PCR). Results: A total of 44 trihelix family members were discovered, and members were distributed over 10 chromosomes in the maize genome. A total of 11 genes were identified that were regulated by heat stress; these were unevenly distributed on chromosomes 1, 2, 4, 5, and 10. ZmTHs encoded a total of 16 proteins, all of which were located in the nucleus; however, ZmTH04.1 was also distributed in the chloroplast. The protein length varied from 206 to 725 amino acids; the molecular weight ranged from 22.63 to 76.40 kD; and the theoretical isoelectric point (pI) ranged from 5.24 to 11.2. The protein's secondary structures were mainly found to be random coils and α-helices, with fewer instances of elongation chains and ß-rotations. Phylogenetic relationship analysis showed that these can be divided into five sub-groups. The conserved domain of ZmTHs was GT1 or MyB_DNA-Bind_4. The protein and gene structure of ZmTHs differed greatly among the subfamilies, while the structures within the subfamilies were similar. The promoter of ZmTHs contained abundant tissue-specific expression cis-acting elements and abiotic stress response elements. qRT-PCR analysis showed that ZmTHs expression levels were significantly different in different tissues. Furthermore, the expression of ZmTH08 was dramatically up-regulated by heat stress, while the expression of ZmTH03, ZmTH04, ZmTH05, ZmTH06, ZmTH07, ZmTH09, ZmTH10, and ZmTH11 were down-regulated by heat stress. Upon PEG-simulated drought stress, ZmTH06 was significantly up-regulated, while ZmTH01 and ZmTH07 were down-regulated. Conclusions: We performed a genome-wide, systematic identification and analysis of differentially expressed trihelix genes under heat and drought stresses in maize.


Assuntos
Perfilação da Expressão Gênica , Zea mays , Zea mays/genética , Filogenia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Estresse Fisiológico/genética
3.
PeerJ ; 10: e14282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340207

RESUMO

Background: The potassium ion (K+) plays an important role in maintaining plant growth and development, while excess potassium in the soil can cause stress to plants. The understanding of the molecular mechanism of plant's response to high KCl stress is still limited. Methods: At the seed stage, wild type (WT) and SENSITIVE TO SALT1 (SES1) mutants were exposed to different concentrations of potassium treatments. Tolerance was assayed as we compared their performances under stress using seedling establishment rate and root length. Na+content, K+content, and K+/Na+ ratio were determined using a flame atomic absorption spectrometer. In addition, the expressions of KCl-responding genes and ER stress-related genes were also detected and analyzed using qRT-PCR. Results: SES1 mutants exhibited seedling establishment defects under high potassium concentration conditions and exogenous calcium partially restored the hypersensitivity phenotype of ses1 mutants. The expression of some K+ transporter/channel genes were higher in ses1-2, and the ratio of potassium to sodium (K+/Na+) in ses1-2 roots decreased after KCl treatment compared with WT. Further analysis showed that the ER stress marker genes were dramatically induced by high K+ treatment and much higher expression levels were detected in ses1-2, indicating ses1-2 suffers a more serious ER stress than WT, and ER stress may influence the seedling establishment of ses1-2 under high KCl conditions. Conclusion: These results strongly indicate that SES1 is a potassium tolerance relevant molecule that may be related to maintaining the seedling K+/Na+ balance under high potassium conditions during seedling establishment and post-germination growth. Our results will provide a basis for further studies on the biological roles of SES1 in modulating potassium uptake, transport, and adaptation to stress conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Plântula/genética , Germinação/genética , Proteínas de Arabidopsis/genética , Sódio/metabolismo , Potássio/farmacologia
4.
Rice (N Y) ; 15(1): 50, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36208371

RESUMO

WHIRLY (WHY) family proteins, a small family of single-stranded DNA (ssDNA) binding proteins, are widely found in plants and have multiple functions to regulate plant growth and development. However, WHY in rice has received less attention. In this study, we continued our previous study on OsTRX z that is important for chloroplast development. OsTRX z was discovered to interact with OsWHY1, which was confirmed using yeast two-hybrid, pull-down, and BiFC assays. Subsequently, the oswhy1 mutants were obtained by CRISPR/Cas9, which exhibited an albino phenotype and died after the three-leaf stage. Consistent with this albino phenotype, low amounts of Chl a, Chl b, and Car were detected in the oswhy1-1 mutant. Moreover, the oswhy1-1 mutant had chloroplasts with disrupted architecture and no stacked grana and thylakoid membranes. Subcellular localization showed that the OsWHY1-GFP fusion protein was targeted to the chloroplast. What's more, OsWHY1 was found to be preferentially expressed in young leaves and was involved in chloroplast RNA editing and splicing. Mutation of OsWHY1 significantly affected the expression of chloroplast and ribosome development-related and chlorophyll synthesis-related genes. In conclusion, OsWHY1 contributes to early chloroplast development and normal seedling survival in rice. These results will further elucidate the molecular mechanism of chloroplast development and expand our understanding of WHY1 functions.

5.
Biochem Biophys Res Commun ; 513(3): 582-588, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30981503

RESUMO

Heat stress significantly disturbs the protein folding and processing capability in plants. Molecular chaperones are vital players in unfolded/misfolded protein assembly and abiotic stress tolerance. Here, we reported SES1, which encodes an endoplasmic reticulum (ER) localized molecular chaperone, is required for Arabidopsis heat tolerance. SES1 is obviously induced by heat treatment and ses1 mutants are hypersensitive to heat stress. The unfolded protein response genes were up-regulated, while cytosolic protein response genes were down-regulated in ses1 after heat stress. Furthermore, ER stress sensor basic leucine zipper 28 (bZIP28) acts as the upstream transcriptional activator of SES1 by binding to its promoter region. These results provide new insights into heat stress responses and ER stress, and shed lights on the mechanism of SES1 in modulating heat resistance.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Chaperonas Moleculares/fisiologia , Termotolerância/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/genética , Ativação Transcricional , Resposta a Proteínas não Dobradas
6.
Plant Physiol ; 178(3): 1390-1405, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30287478

RESUMO

Salt stress seriously affects plant growth and development. Through genetic screening, we identified and characterized an Arabidopsis (Arabidopsis thaliana) sensitive to salt1 (ses1) mutant. SES1 was ubiquitously expressed and induced by salt treatment. The salt-sensitive phenotype of ses1 was due neither to the overaccumulation of Na+ nor to the suppression of salt tolerance-associated genes. SES1 encoded an uncharacterized endoplasmic reticulum (ER)-localized protein. Coinciding with its subcellular distribution, ses1 exhibited overactivation of unfolded protein response genes and was largely influenced by severe ER stress. Biochemical evidence revealed that SES1 functions as an important molecular chaperone to alleviate salt-induced ER stress. Furthermore, the ER stress sensor basic leucine zipper factor17 transactivated SES1 by binding directly to its promoter region. These results provide insights into salt stress responses and ER homeostasis and shed light on the mechanism by which SES1 modulates salt resistance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Chaperonas Moleculares/metabolismo , Ativação Transcricional , Resposta a Proteínas não Dobradas , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Chaperonas Moleculares/genética , Mutação , Regiões Promotoras Genéticas/genética , Estresse Salino , Tolerância ao Sal , Cloreto de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...