Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960467

RESUMO

Spectrometers are key instruments in diverse fields, notably in medical and biosensing applications. Recent advancements in nanophotonics and computational techniques have contributed to new spectrometer designs characterized by miniaturization and enhanced performance. This paper presents a comprehensive review of miniaturized computational spectrometers (MCS). We examine major MCS designs based on waveguides, random structures, nanowires, photonic crystals, and more. Additionally, we delve into computational methodologies that facilitate their operation, including compressive sensing and deep learning. We also compare various structural models and highlight their unique features. This review also emphasizes the growing applications of MCS in biosensing and consumer electronics and provides a thoughtful perspective on their future potential. Lastly, we discuss potential avenues for future research and applications.

2.
Micromachines (Basel) ; 13(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36144132

RESUMO

With the development of silicon photonics, dense photonic integrated circuits play a significant role in applications such as light detection and ranging systems, photonic computing accelerators, miniaturized spectrometers, and so on. Recently, extensive research work has been carried out on the phase shifter, which acts as the fundamental building block in the photonic integrated circuit. In this review, we overview different types of silicon photonic phase shifters, including micro-electro-mechanical systems (MEMS), thermo-optics, and free-carrier depletion types, highlighting the MEMS-based ones. The major working principles of these phase shifters are introduced and analyzed. Additionally, the related works are summarized and compared. Moreover, some emerging applications utilizing phase shifters are introduced, such as neuromorphic computing systems, photonic accelerators, multi-purpose processing cores, etc. Finally, a discussion on each kind of phase shifter is given based on the figures of merit.

3.
Sci Rep ; 11(1): 10598, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011983

RESUMO

Perfectly controlled molecules are at the forefront of the quest to explore chemical reactivity at ultra low temperatures. Here, we investigate for the first time the formation of the long-lived intermediates in the time-dependent scattering of cold bialkali [Formula: see text]Rb molecules with and without the presence of infrared trapping light. During the nearly 50 nanoseconds mean collision time of the intermediate complex, we observe unconventional roaming when for a few tens of picoseconds either NaRb or [Formula: see text] and [Formula: see text] molecules with large relative separation are formed before returning to the four-atom complex. We also determine the likelihood of molecular loss when the trapping laser is present during the collision. We find that at a wavelength of 1064 nm the [Formula: see text] complex is quickly destroyed and thus that the [Formula: see text]Rb molecules are rapidly lost.

4.
Opt Express ; 29(6): 8024-8040, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820257

RESUMO

Multiple works have applied deep learning to fringe projection profilometry (FPP) in recent years. However, to obtain a large amount of data from actual systems for training is still a tricky problem, and moreover, the network design and optimization is still worth exploring. In this paper, we introduce graphic software to build virtual FPP systems in order to generate the desired datasets conveniently and simply. The way of constructing a virtual FPP system is described in detail firstly, and then some key factors to set the virtual FPP system much closer to reality are analyzed. With the aim of accurately estimating the depth image from only one fringe image, we also design a new loss function to enhance the overall quality and detailed information is restored. And two representative networks, U-Net and pix2pix, are compared in multiple aspects. The real experiments prove the good accuracy and generalization of the network trained by the diverse data from our virtual systems and the designed loss, providing a good guidance for real applications of deep learning methods.

5.
Phys Chem Chem Phys ; 22(36): 20531-20544, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966419

RESUMO

A barrier to realizing the potential of molecules for quantum information science applications is a lack of high-fidelity, single-molecule imaging techniques. Here, we present and theoretically analyze a general scheme for dispersive imaging of electronic ground-state molecules. Our technique relies on the intrinsic anisotropy of excited molecular rotational states to generate optical birefringence, which can be detected through polarization rotation of an off-resonant probe laser beam. Using 23Na87Rb and 87Rb133Cs as examples, we construct a formalism for choosing the molecular state to be imaged and the excited electronic states involved in off-resonant coupling. Our proposal establishes the relevant parameters for achieving degree-level polarization rotations for bulk molecular gases, thus enabling high-fidelity nondestructive imaging. We additionally outline requirements for the high-fidelity imaging of individually trapped molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...