Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Analyt Chem ; 1622023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38106545

RESUMO

Biomarker detection has attracted increasing interest in recent years due to the minimally or non-invasive sampling process. Single entity analysis of biomarkers is expected to provide real-time and accurate biological information for early disease diagnosis and prognosis, which is critical to the effective disease treatment and is also important in personalized medicine. As an innovative single entity analysis method, nanopore sensing is a pioneering single-molecule detection technique that is widely used in analytical bioanalytical fields. In this review, we overview the recent progress of nanopore biomarker detection as new approaches to disease diagnosis. In highlighted studies, nanopore was focusing on detecting biomarkers of different categories of communicable and noncommunicable diseases, such as pandemic Covid-19, AIDS, cancers, neurologic diseases, etc. Various sensitive and selective nanopore detecting strategies for different types of biomarkers are summarized. In addition, the challenges, opportunities, and direction for future development of nanopore-based biomarker sensors are also discussed.

2.
Biosens Bioelectron ; 231: 115299, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054600

RESUMO

Natriuretic peptides can relieve cardiovascular stress and closely related to heart failure. Besides, these peptides also have preferable interactions of binding to cellular protein receptors, and subsequently mediate various physiology actions. Hence, detection of these circulating biomarkers could be evaluated as a predictor ("Gold standard") for rapid, early diagnosis and risk stratification in heart failure. Herein, we proposed a measurement to discriminate multiple natriuretic peptides via the peptide-protein nanopore interaction. The nanopore single-molecular kinetics revealed that the strength of peptide-protein interactions was in the order of ANP > CNP > BNP, which was demonstrated by the simulated peptide structures using SWISS-MODEL. More importantly, the peptide-protein interaction analyzing also allowed us to measure the peptide linear analogs and structure damage in peptide by single-chemical bond breakup. Finally, we presented an ultra-sensitive detection of plasma natriuretic peptide using asymmetric electrolyte assay, obtaining a detection limit of ∼770 fM for BNP. At approximately, it is 1597 times lower than that of using symmetric assay (∼1.23 nM), 8 times lower than normal human level (∼6 pM), and 13 times lower than the diagnostic values (∼10.09 pM) complied in the guideline of European Society of Cardiology. That said, the designed nanopore sensor is benefit for natriuretic peptides measurement at single molecule level and demonstrates its potential for heart failure diagnosis.


Assuntos
Técnicas Biossensoriais , Insuficiência Cardíaca , Nanoporos , Humanos , Fator Natriurético Atrial/metabolismo , Biomarcadores , Insuficiência Cardíaca/diagnóstico , Peptídeos Natriuréticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...