Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e27794, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560147

RESUMO

The jet generated through PTFE based inert material liner has the characteristics of low energy, low density, and large aspect ratio, which can effectively achieve the "penetration without explosion" of explosive reactive armor. PTFE/Cu composite material liner with various densities is prepared, to research the roles of preparation procedure and density in the destroy effect of jet on reactive armor. Through numerical simulation research, it was found that there was no reaction at all in the explosive layer penetrated by the jet generated by the sinter liner molded, while the explosive layer penetrated by the jet generated through the hot-pressing sintering and extrusion molding liner experienced local reactions on the jet impact channel, and the overall explosive layer did not undergo any reaction. Through experimental verification, it has been proven that all three types of jets have achieved "penetration without explosion" on explosive reactive armor.

2.
Sci Rep ; 13(1): 15659, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730857

RESUMO

In this paper, PTFE/Cu composite material for liner is taken as the research object, and the preparation process and jet forming characteristics of PTFE/Cu composite liner are studied. The liners were prepared by extrusion molding, molded sintering and hot-pressing sintering. Due to different preparation processes, different microstructures of the liner can occur, including defects such as pores and microcracks, resulting in different strength and density of the liner, leading to differences in the forming characteristics of the jet. Therefore, the forming process of the jet was simulated by the finite element numerical simulation software. It was found that there was obvious radial expansion effect in the head of the jet, but with the increase of density, the radial expansion effect was weakened, and the jet velocity decreased gradually. The strength and densification of the shaped charge liner prepared by different processes were different. The densification of the molded sintering liner was generally better than that of the other two kinds of shaped charge liners. As a result, the velocity of the jet formed by the molded sintering liner is always the highest, with a numerical simulation velocity of 6642 m/s and an experimental velocity of 6534.7 m/s. The second is the jet of the hot-pressing sintering liner and the lowest velocity is the jet of the extrusion molding cover, with a numerical simulation velocity of 6482 m/s, while the experimental velocity is only 6397.9 m/s. The jet velocity measured by the pulse X-ray experiment was compared with the velocity of the numerical simulation, and the error was within 2.96%, which verifies the accuracy of the numerical simulation.

3.
Polymers (Basel) ; 15(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37688130

RESUMO

The jet formed by the traditional metal liner has a slender shape. The diameter of the jet head is consistent with that of the tail, and the ductility is good. When it is used to penetrate the target, it has a good damage effect. The low-density jet formed by the PTFE/Cu liner, according to the different preparation processes and densities, has different degrees of radial expansion. This phenomenon may lead to the expansion of the jet head during the penetration process, resulting in a damage effect, which is different from the previous jet on the target. In this paper, the numerical simulation of PTFE/Cu liners with different preparation processes penetrating steel targets is carried out, and the effects of different preparation processes and liner density on the penetration characteristics of jets penetrating steel targets are compared and analyzed. The PTFE/Cu shaped charge liner was processed according to different preparation processes, and the jet penetration steel target experiment was carried out, so as to verify and analyze the numerical simulation results.

4.
Polymers (Basel) ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37688190

RESUMO

In order to improve the research and development efficiency and quality of low-density liners in production and scientific research development, PLA and PLA-Cu composite liners were prepared based on 3D-printing technology. In this paper, the relationship between the shock wave velocity D and the particle velocity u of PLA and PLA-Cu materials was tested by a one-stage light gas gun experiment device, and then the Grüneisen equation of state parameters of the two materials was obtained by fitting. The forming process of the two jets was numerically simulated by using the equation of state. When combined with the pulsed X-ray shooting results of the jets, it was found that the jets of the two materials showed obvious characteristics of "expansion particle flow", and the head of the PLA jet had a gasification phenomenon. The length of the PLA jet at 20 µs in the numerical simulation was 127.2 mm, and the average length of the PLA jet at 20 µs in the pulsed X-ray shooting experiment was 100.45 mm. The length of the PLA jet gasification part accounted for about 21% of the total length of the jet. The average velocity of the head of the PLA jet is 7798.35 m/s, and the average velocity of the head of the PLA-Cu jet is 8104.25 m/s. In this paper, 3D-printing technology is used to prepare the liner for the first time, aiming to open up a new preparation technology and provide a new material selection for low-density material liners.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...