Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 24(3): 588-598, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35384611

RESUMO

Largemouth bass (Micropterus salmoides) is an economically important fish. It can spawn many times during a breeding season, and there are no obvious morphological characteristics to distinguish male and female juvenile fish. So far, little is known about the genes regulating their sexual development in this species. Here, we performed RNA sequencing (RNA-Seq) analysis of the testis, ovary, and somatic tissue to identify sex-related genes in the largemouth bass. A total of 51,672 unigenes were obtained via the transcriptome analysis, and 5900 differential expression genes (DEGs), including 3028 up-regulated and 2872 down-regulated DEGs, were obtained in the somatic tissue, testis, and ovary. DEGs were retrieved by making comparisons: somatic tissue vs testis (1733-up and 1382-down), testis vs ovary (841-up and 807-down), and ovary vs somatic tissue (454-up and 683-down). Finally, functional annotation identified 22 key sex-related DEGs, including 13 testis-biased DEGs (dmrt1, cyp11b1, sox9, spata4, spata22, spata17, fshr, fem-1a, wt1, daz1, amh, vasa, and piwi1) and 9 ovary-biased DEGs (foxl2, gdf9, zp3, sox3, cyp19a, bmp15, fem-1b, fig. la, and piwi2). This result was further confirmed by the tissue expression detection via RT-PCR and RT-qPCR. Protein-protein interacting (PPI) network analysis revealed that the testis-specific dmrt1 interacts directly with the testis-biased DEGs (cyp11b1 and spata4) and the ovary-biased DEGs (foxl2, gdf9, zp3, sox3, cyp19a, and bmp15), suggesting that the dmrt1 as a sex-determining gene can play a dual role through inducing the testis-biased DEGs and inhibiting the ovary-biased DEGs during the testicular development. Our present results provide useful molecular data for a better understanding of sexual development in the largemouth bass.


Assuntos
Bass , Animais , Bass/genética , Feminino , Perfilação da Expressão Gênica/métodos , Gônadas , Masculino , Esteroide 11-beta-Hidroxilase/genética , Transcriptoma
2.
PLoS One ; 15(10): e0240308, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33035258

RESUMO

During recent years, China has become a hotspot for the domestication of mandarin fish, and this is of great commercial value. Although the food preference of domesticated mandarin fish has been studied, little is known about genes regulating their growth. We raised hybrid mandarin fish on artificial feed for 3 months, the results showed that the survival rate of hybrid mandarin fish was 60.00%. Their total length and body weight were 18.34 ±0.43 cm and 100.44 ±4.87 g. The absolute length and weight gain rates were 0.14 cm/d and 1.08 g/d, respectively. Finally, RNA sequencing (RNA-Seq) was performed to identify potential genes and pathways activated in response to growth performance. The transcriptome analysis generated 68, 197 transcripts and 45,871 unigenes. Among them, 1025 genes were up-regulated and 593 genes were down-regulated between the fast- and slow-growth fish. Finally, we obtained 32 differentially expressed genes, which were mainly related to fatty acid biosynthesis (e.g. FASN and ACACB), collecting duct acid secretion (e.g. ATP6E and KCC4), cell cycle (e.g. CDC20 and CCNB), and the insulin-like growth factor (IGF) system (IGFBP1). These pathways might be related to the growth of hybrid mandarin fish. In addition, more potential single nucleotide polymorphisms (SNPs) were detected in the fast-growth fish than in the slow-growth fish. The results suggest that the interaction of metabolism and abundant alleles might determine the growth of hybrid mandarin fish after food conversion.


Assuntos
Peixes/crescimento & desenvolvimento , Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes , Ração Animal , Animais , Peso Corporal , China , Proteínas de Peixes/genética , Pesqueiros , Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA
3.
Fish Physiol Biochem ; 43(2): 641-651, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28127645

RESUMO

The heme oxygenase (HO)-1 is a cytoprotective enzyme that can be involved in cytoprotection against hypoxia stress. In this study, we cloned duplicated HO-1a and HO-1b cDNAs in hypoxia-sensitive blunt snout bream (Megalobrama amblycephala). HO-1a and HO-1b encode peptides with 272 amino acids and 246 amino acids, respectively, and they share a low sequence identity of 55%. HO-1a and HO-1b mRNAs were maternally deposited in the zygote, and the mRNAs decreased to the lowest levels at 8 hpf. Both mRNAs were significantly (p < 0.01) expressed from 12 hpf and fluctuated but maintained a high level after 16 hpf. Using in situ hybridization, HO-1a and HO-1b mRNAs were ubiquitously expressed in embryos at 12 hpf. At 24 and 36 hpf, HO-1b transcripts were detected in the mid- and hindbrain, respectively, whereas HO-1a was mainly transcribed in the eyes and endoderm at 24 hpf and in the brain at 36 hpf. In adult fish, HO-1a was abundantly expressed in the heart, liver, gill, kidney, spleen, and brain, while HO-1b mRNA was detected mainly in the kidney. After exposure to hypoxic stress, both HO-1a and HO-1b mRNAs were upregulated significantly in the gill and liver but downregulated significantly in the brain (p < 0.01). These findings suggest that duplicated HO genes have evolved divergently and yet play overlapping biological roles in regulating the response to hypoxia in M. amblycephala.


Assuntos
Cyprinidae/genética , Proteínas de Peixes/genética , Heme Oxigenase-1/genética , Hipóxia/genética , Estresse Fisiológico/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Cyprinidae/embriologia , Cyprinidae/fisiologia , DNA Complementar/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
4.
Gen Comp Endocrinol ; 240: 61-68, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27677452

RESUMO

Fibroblast growth factor 1 (Fgf1) is known as a mitogenic factor involved in the regulation of cell growth, proliferation, and differentiation in vertebrates. Here, we report the isolation and characterization of two fgf1 genes in grass carp (Ctenopharyngodon idella). Grass carp fgf1a and fgf1b cDNAs are highly divergent, sharing a relatively low amino acid sequence identity of 50%, probably due to fish-specific gene duplication. fgf1a and fgf1b mRNAs were detected in the zygote and expressed throughout embryogenesis. Both fgf1a and fgf1b mRNAs were primarily detectable in the notochord at 12 hpf. At 24 hpf, fgf1a mRNA was mainly expressed in the gut and somites, while fgf1b transcript persisted in the notochord and was detected in the tailbud. At 36 hpf, both fgf1a and fgf1b transcripts were detected in the brain, somites, and tailbud. In addition, the fgf1a mRNA was detected at the base of the yolk sac, whereas the fgf1b mRNA was expressed in the pectoral fin. In adult fish, duplicated fgf1a and fgf1b mRNAs were distributed in most tissues. After 2-6days of starvation, both fgf1a and fgf1b mRNAs were upregulated in the muscle and liver. In the brain, fgf1a mRNA was upregulated, while fgf1b mRNA was significantly downregulated at 6days. Furthermore, both fgf1a and fgf1b mRNA levels were significantly decreased in the brain and muscle after administration of 10 or 50µg of the human growth hormone (hGH),while their mRNA levels were no significant difference in the liver. These results suggest that duplicated fgf1s may play important but divergent roles in the grass carp development.


Assuntos
Carpas , Fator 1 de Crescimento de Fibroblastos/metabolismo , Proteínas de Peixes/genética , Animais , Carpas/metabolismo , Fator 1 de Crescimento de Fibroblastos/genética , Duplicação Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...