Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 9(17): 9718-9728, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35520714

RESUMO

Porous carbon has been expected to be a potential candidate as a lightweight and efficient microwave absorber. Nano-porous carbon carbonized directly from a walnut shell exhibits narrow microwave absorption frequency bandwidth, while the activation process can adjust the pore structure and optimize the microwave absorption performance. Herein, porous carbon materials were successfully prepared using walnut shells as precursors and ZnCl2 as the activating agent. The superior microwave absorption performances of the as-prepared samples could be attributed to the well-developed pore structures and the enhanced dielectric loss capacities of the samples. The interfacial polarization in the walls of the pores and the defects in the samples significantly contributed to the enhancement of the dielectric loss capacities of the samples. In this work, the broadband microwave absorbing porous carbon exhibited an effective absorption bandwidth (reflection loss ≤ -10 dB) of 7.2 GHz (ranging from 10.8 GHz to 18.0 GHz) when the absorber thickness was 2.5 mm. In addition, an effective absorption bandwidth of 6.0 GHz (ranging from 11.4 GHz to 17.4 GHz) could also be achieved when the absorber thickness was only 2.0 mm. The samples exhibited low densities, strong microwave absorption performances and wide effective absorption bandwidths with thin absorber thicknesses, due to which they have a great potential as lightweight and efficient microwave absorbers.

2.
Nanoscale ; 9(22): 7408-7418, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28540377

RESUMO

Lightweight microwave absorbing materials have drawn tremendous attention. Herein, nano-porous biomass carbon materials have been prepared by carbonization with a subsequent potassium hydroxide activation of walnut shells and the microwave absorption properties have also been investigated. The obtained samples have large specific surface areas with numerous micropores and nanopores. The sample activated at 600 °C with a specific surface area of 736.2 m2 g-1 exhibits the most enhanced microwave absorption performance. It has the maximum reflection loss of -42.4 dB at 8.88 GHz and the effective absorption bandwidth (reflection loss below -10 dB) is 1.76 GHz (from 8.08 GHz to 9.84 GHz), corresponding to a thickness of 2 mm. Additionally, the effective absorption bandwidth can reach 2.24 GHz (from 10.48 GHz to 12.72 GHz) when the absorber thickness is 1.5 mm. Three-dimensional porous architecture, interfacial polarization relaxation loss, and the dipolar relaxation loss make a great contribution to the excellent microwave absorption performance. In contrast, the non-activated sample with lower specific surface area (435.3 m2 g-1) has poor microwave absorption performance due to a poor dielectric loss capacity. This comparison highlights the role of micropores and nanopores in improving the dielectric loss property of porous carbon materials. To sum up, porous biomass carbon has great potential to become lightweight microwave absorbers. Moreover, KOH is an efficient activation agent in the fabrication of carbonaceous materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...