Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biochim Biophys Sin (Shanghai) ; 54(10): 1464-1475, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36269134

RESUMO

The aberrant changes of fussion/fission-related proteins can trigger mitochondrial dynamics imbalance, which cause mitochondrial dysfunctions and result insulin resistance (IR). However, the relationship between the inner mitochondrial membrane fusion protein optic atrophy 1 (Opa1) and hepatic IR as well as the specific molecular mechanisms of signal transduction has not been fully elucidated. In this study, we explore whether abnormalities in the Opa1 cause hepatic IR and whether berberine (BBR) can prevent hepatic IR through the SIRT1/Opa1 signalling pathway. High-fat diet (HFD)-fed mice and db/db mice are used as animal models to study hepatic IR in vivo. IR, morphological changes, and mitochondrial injury of the liver are examined to explore the effects of BBR. SIRT1/Opa1 protein expression is determined to confirm whether the signalling pathway is damaged in the model animals and is involved in BBR treatment-mediated mitigation of hepatic IR. A palmitate (PA)-induced hepatocyte IR model is established in HepG2 cells in vitro. Opa1 silencing and SIRT1 overexpression are induced to verify whether Opa1 deficiency causes hepatocyte IR and whether SIRT1 improves this dysfunction. BBR treatment and SIRT1 silencing are employed to confirm that BBR can prevent hepatic IR by activating the SIRT1/Opa1 signalling pathway. Western blot analysis and JC-1 fluorescent staining results show that Opa1 deficiency causes an imbalance in mitochondrial fusion/fission and impairs insulin signalling in HepG2 cells. SIRT1 and BBR overexpression ameliorates PA-induced IR, increases Opa1, and improves mitochondrial function. SIRT1 silencing partly reverses the effects of BBR on HepG2 cells. SIRT1 and Opa1 expressions are downregulated in the animal models. BBR attenuates hepatic IR and enhances SIRT1/Opa1 signalling in db/db mice. In summary, Opa1 silencing-mediated mitochondrial fusion/fission imbalance could lead to hepatocyte IR. BBR may improve hepatic IR by regulating the SIRT1/Opa1 signalling pathway, and thus, it may be used to treat type-2 diabetes.


Assuntos
Berberina , Resistência à Insulina , Camundongos , Animais , Berberina/farmacologia , Berberina/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fígado/metabolismo , Transdução de Sinais , Mitocôndrias/metabolismo
2.
Front Bioeng Biotechnol ; 10: 927348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845408

RESUMO

At present, islet cells transplantation was limited by the way in which islet cells are implanted into the body, their ability to adapt to the microenvironment and the maintenance time for relieving diabetic symptoms. In order to solve this problem, we made PDA-PLGA scaffold loaded with islet cells and used it for skeletal muscle transplantation to investigate its therapeutic effect in the treatment of diabetes. The PLGA scaffold was prepared by the electrospinning method, and modified by polydopamine coating. A rat diabetic model was established to evaluate the efficacy of PDA-PLGA scaffold loaded with RINm5f islet cells through skeletal muscle transplantation. The results showed that the PDA-PLGA scaffold has good biosafety performance. At the same time, transplantation of the stent to the skeletal muscle site had little effect on the serum biochemical indicators of rats, which was conducive to angiogenesis. The PDA-PLGA scaffold had no effect on the secretory function of pancreatic islet cells. The PDA-PLGA scaffold carrying RINm5f cells was transplanted into the skeletal muscle of type I diabetic rats. 1 week after the transplantation of the PDA-PLGA cell scaffold complex, the blood glucose of the treatment group was significantly lower than that of the model group (p < 0.001) and lasted for approximately 3 weeks, which further indicated the skeletal muscle transplantation site was a new choice for islet cell transplantation in the future.

3.
Sheng Wu Gong Cheng Xue Bao ; 35(8): 1382-1390, 2019 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-31441609

RESUMO

Mitochondrial dynamics, the processes of mitochondrial fusion and fission maintain homeostasis, are precisely regulated by fusion/fission-related proteins, and play an important physiological role in mitochondrial metabolism, quality and function. The aberrant changes of these proteins can trigger mitochondrial dynamics imbalance, which cause mitochondrial dysfunctions and result various disease states. This article focuses on gene knockout technology, and reviews the role and application progress of genes encoding for fusion and fission knockout mice in insulin resistance researches, in order to lay a foundation for future studies on signal transduction mechanism of mitochondrial dynamics imbalance in insulin resistance.


Assuntos
Resistência à Insulina , Dinâmica Mitocondrial , Animais , Técnicas de Inativação de Genes , Camundongos , Mitocôndrias , Proteínas Mitocondriais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...