Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 329: 117034, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549058

RESUMO

Mainland Southeast Asian (MSEA) countries (Cambodia, Laos, Thailand, Myanmar, and Vietnam) are likely to become one of the next hotspots for emission reduction, since CO2 emissions in this area will have a two-thirds increase by 2040 due to rapid economy growth and associated energy consumption. As one of the most vulnerable areas to climate change, MSEA countries need to develop low-carbon roadmaps based on accurate emission data. This study provides emission inventories for MSEA countries for 2010-2019, based on the IPCC territorial emission accounting approach , including emissions from five types of fuels (i.e., coal, crude oil, oil products, natural gas, and biofuels & waste) used in 47 economic sectors. The results show that the emissions in MSEA countries are on the rise, with average annual growth rates ranging from 2.5% in Thailand to 19.3% in Laos. Biomass is one of the most important sources of carbon emissions, contributing between 11.8% and 76.7% of total carbon emissions, but its share has been declining in most countries, whereas the share of emissions from coal has risen sharply in Laos, Vietnam, and Cambodia. We further examine the drivers behind the changes in emissions using index decomposition analysis. Economic growth was the strongest driver of growth in emissions, while population growth has only had a small effect on emission growth. Energy intensity varies widely across nations, but only significantly reduced CO2 emission growth in Thailand. The secondary sector considerable contributed to an increase in CO2 emissions in Laos and Vietnam, while the tertiary sector only moderately contributed to emissions in Thailand. Our study provides a better understanding of the composition and underlying factors of emission growth in MSEA countries, this could shape their low-carbon development pathway. Our results could also inform other emerging economies, which may become emission hotspots in the next decades, to develop low-carbon roadmaps, thereby contributing to the achievement of global climate change targets.


Assuntos
Dióxido de Carbono , População do Sudeste Asiático , Humanos , Dióxido de Carbono/análise , Carvão Mineral , Sudeste Asiático , Carbono/análise , Desenvolvimento Econômico
2.
Sci Bull (Beijing) ; 67(18): 1910-1920, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546305

RESUMO

China is playing an increasing role in global climate change mitigation, and local authorities need more city-specific information on the emissions trends and patterns when designing low-carbon policies. This study provides the most comprehensive CO2 emission inventories of 287 Chinese cities from 2001 to 2019. The emission inventories are compiled for 47 economic sectors and include energy-related emissions for 17 types of fossil fuels and process-related emissions from cement production. We further investigate the state of the emission peak in each city and reveal hidden driving forces. The results show that 38 cities have proactively peaked their emissions for at least five years and another 21 cities also have emission decline, but passively. The 38 proactively peaked cities achieved emission decline mainly by efficiency improvements and structural changes in energy use, while the 21 passively emission declined cities reduced emissions at the cost of economic recession or population loss. We propose that those passively emission declined cities need to face up to the reasons that caused the emission to decline, and fully exploit the opportunities provided by industrial innovation and green investment brought by low-carbon targets to achieve economic recovery and carbon mitigation goals. Proactively peaked cities need to seek strategies to maintain the downward trend in emissions and avoid an emission rebound and thus provide successful models for cities with still growing emissions to achieve an emission peak.


Assuntos
Dióxido de Carbono , Indústrias , Dióxido de Carbono/análise , Cidades , China , Carbono/análise
3.
Sci Data ; 9(1): 317, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710815

RESUMO

Wastewater treatment plants (WWTPs) alleviate water pollution but also induce resource consumption and environmental impacts especially greenhouse gas (GHG) emissions. Mitigating GHG emissions of WWTPs can contribute to achieving carbon neutrality in China. But there is still a lack of a high-resolution and time-series GHG emission inventories of WWTPs in China. In this study, we construct a firm-level emission inventory of WWTPs for CH4, N2O and CO2 emissions from different wastewater treatment processes, energy consumption and effluent discharge for the time-period from 2006 to 2019. We aim to develop a transparent, verifiable and comparable WWTP GHG emission inventory to support GHG mitigation of WWTPs in China.

4.
Sci Total Environ ; 699: 134178, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31629316

RESUMO

The rapid development of cities leads to the frequent occurrence of air pollution incidents, which seriously hinders urban sustainability. This study develops a dynamic regional air pollution analysis (DRA) model to explore the mechanism of air pollutant emission changes. Specifically, the emissions differences among various sectors are distinguished by multi-angle accounting (MAA) method, and sectors' evolutionary trajectories are described by sector evolution analysis (SEA). Through combining emission deconstruction analysis (EDA) and structural decomposition analysis (SDA), key emission patterns and decisive socioeconomic factors are identified. The empirical results indicate that different sectors play different roles in the urban emission system and differentiated regulation policies should be formulated according to their characteristics. Changes of demand and supply patterns can result in the fluctuation in regional air pollutant emissions. Exports and worker's reward are the most significant contributors to air pollution on demand and supply sides, accounting for more than 54.3% and 44.0% of total emissions, respectively. The final demand level and the primary input level are the two biggest drivers of the emission increase, while emission intensity is the most crucial factor that offsets the emission growth. Also, there are significant differences in demand and supply structure. The contribution of primary input structure to emission reduction was more significant than that of final demand structure, which contributed 14.6% in 2015. The findings in this study will provide reliable information for developing more comprehensive and effective mitigation policies.

5.
Environ Pollut ; 256: 113502, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31706757

RESUMO

Large amounts of wastewater discharge have emerged as a burden in the process of industrialization and urbanization. In this study, a dynamic wastewater-induced input-output model is developed to systematically analyze the related situation. The developed model is applied to Guangdong Province, China to analyze its prominent characteristics from 2002 to 2015. Combining input-output analysis, ecological network analysis and structural decomposition analysis, the developed model reveals issues of direct and indirect discharges, relationships among various discharges, and driving forces of wastewater discharges. It is uncovered that Primary Manufacturing and Advanced Manufacturing dominate the system because of significant temporal and spatial variations in wastewater discharge. In addition, Manufacturing of paper, computer and machinery and Services are the key industries responsible for large amounts of wastewater discharge and unhealthy source-discharge relationships. The largest wastewater discharge occurred in 2005 and indirect wastewater discharge is the main form. Furthermore, final demand is found to be the biggest driving force of wastewater discharge. Finally, a three-phase policy implementation system implemented in stages proposes solutions to wastewater problems.


Assuntos
Monitoramento Ambiental , Águas Residuárias/análise , Poluição da Água/análise , China , Ecologia , Indústrias , Urbanização , Poluição da Água/estatística & dados numéricos
6.
Sci Total Environ ; 696: 133937, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31450051

RESUMO

China is suffering from serious air pollution. Regional air quality varies significantly due to intensive inter-provincial trades, diversified resource endowments and complicated economic structures. This study breaks the limitations of measuring environmental inequality only from a single perspective and establishes a three-perspective atmospheric pollutant equivalents accounting model (or APE accounting model) for air-pollution inequality assessment under environmentally-extend multi-regional input-output framework. From three perspectives of local production (i.e. production-based), final demand (i.e. consumption-based) and primary supply (i.e. income-based), APE emissions, APE transfers and environmental Gini coefficient are investigated to exam emission responsibilities of various impact factors, evaluate the impacts of inter-provincial trades on pollutants transfers, and characterize regional emission inequalities at both provincial and sectoral levels. The results indicate that local emitters are merely parts of contributors to air pollution. Direct emitters like Hebei Province, primary suppliers like Inner Mongolia and final consumers like Shandong Province induce large amounts of air pollutants as embedded within various economic activities. Because of unequal supply-demand levels and complex exchange mechanisms, three-perspective APE emissions are significantly heterogeneous, especially in mining, construction, energy and material-transformation sectors. Particularly, inequality of the mining sector in embodied emissions has the highest environmental Gini coefficient (0.881). This model provides a framework to assess regional environmental inequality and its findings provide scientific bases for the formulation of desired regional air pollution control policies.

7.
Environ Pollut ; 244: 279-287, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30342368

RESUMO

Faced with an increasing amount of industrial solid waste (ISW) in the process of rapid industrialization, it is indispensable to carry out ISW metabolism study to realize source and waste reduction. In this study, a new composite waste input-output (WIO) model is developed to examine ISW production and production relationships among different sectors. In particular, the extended methods of network control analysis and network utility analysis are used in the ecological network analysis under two ISW scenarios (i.e. common industrial solid waste (CISW) and hazardous waste (HW) scenarios). Furthermore, comprehensive utilization analysis is first developed to evaluate the ISW utilization level and to guide the planning of sectors with large proportion of ISW production. A case study of Guangdong, China shows that indirect flow analysis can be used to understand the internal ISW metabolism structure. The mining sectors produce a large amount of direct ISW and perform a low level of comprehensive utilization, but they have mutualism relationships with other sectors. The energy transformation (EH) sector in the CISW system has high direct generation intensity and plays as a main controller. The situation of paper manufacturing (MP) sector in HW system is similar to that of EH. Therefore, it is expected that the results of this study will provide scientific foundations for these sectors to formulate future ISW reduction policies.


Assuntos
Resíduos Perigosos/análise , Resíduos Industriais/análise , Resíduos Sólidos/análise , Gerenciamento de Resíduos/métodos , China , Ecologia , Indústrias , Mineração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...