Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535188

RESUMO

Root rot as a result of Salvia miltiorrhiza is a common root disease caused by Fusarium spp., which has become one of the main diseases affecting the production of S. miltiorrhiza. Currently, several hypovirulence-related mycoviruses have been identified in many phytopathogenic fungi, including Fusarium spp., which show potential as biological controls. In this study, we report a new mycovirus, Fusarium oxysporum partitivirus 1 (FoPV1), isolated from F. oxysporum strain FCR51, which is a causal agent of S. miltiorrhiza dry rot. The FoPV1 genome contains two double-stranded RNA segments (dsRNA1 and dsRNA2). The size of dsRNA1 is 1773 bp, and it encodes a putative RNA-dependent RNA polymerase (RdRp). The dsRNA2 is 1570 bp in length, encoding a putative capsid protein (CP). Multiple sequence alignments and phylogenetic analyses based on the amino acid sequences of the RdRp and the CP proteins indicated that FoPV1 appears to be a new member of the family Partitiviridae that is related to members of the genus Gammapartitivirus. Pathogenicity assay showed that FoPV1 confers hypervirulence to its host, F. oxysporum. This is the first report of a partitivirus infecting F. oxysporum and the first hypovirulence-related mycovirus from the causal agent of S. miltiorrhiza dry rot.

2.
Microorganisms ; 11(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138134

RESUMO

Plant diseases caused by pathogenic fungi pose a significant threat to agricultural production. This study reports on a strain YBS22 with broad-spectrum antifungal activity that was isolated and identified, and its active metabolites were purified and systematically studied. Based on a whole genome sequence analysis, the new strain YBS22 was identified as Streptomyces melanogenes. Furthermore, eight gene clusters were predicted in YBS22 that are responsible for the synthesis of bioactive secondary metabolites. These clusters have homologous sequences in the MIBiG database with a similarity of 100%. The antifungal effects of YBS22 and its crude extract were evaluated in vivo and vitro. Our findings revealed that treatment with the strain YBS22 and its crude extract significantly reduced the size of necrotic lesions caused by Magnaporthe oryzae on rice leaves. Further analysis led to the isolation and purification of an active compound from the crude extract of the strain YBS22, identified as N-formylantimycin acid methyl ester, an analog of antimycin, characterized by NMR and MS analyses. Consistently, the active compound can significantly inhibit the germination and development of M. oryzae spores in a manner that is both dose- and time-dependent. As a result, we propose that the strain YBS22 could serve as a novel source for the development of biological agents aimed at controlling rice blast disease.

3.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108422

RESUMO

Fusarium oxysporum causes vascular wilt in more than 100 plant species, resulting in massive economic losses. A deep understanding of the mechanisms of pathogenicity and symptom induction by this fungus is necessary to control crop wilt. The YjeF protein has been proven to function in cellular metabolism damage-repair in Escherichia coli and to play an important role in Edc3 (enhancer of the mRNA decapping 3) function in Candida albicans, but no studies have been reported on related functions in plant pathogenic fungi. In this work, we report how the FomYjeF gene in F. oxysporum f. sp. momordicae contributes to conidia production and virulence. The deletion of the FomYjeF gene displayed a highly improved capacity for macroconidia production, and it was shown to be involved in carbendazim's associated stress pathway. Meanwhile, this gene caused a significant increase in virulence in bitter gourd plants with a higher disease severity index and enhanced the accumulation of glutathione peroxidase and the ability to degrade hydrogen peroxide in F. oxysporum. These findings reveal that FomYjeF affects virulence by influencing the amount of spore formation and the ROS (reactive oxygen species) pathway of F. oxysporum f. sp. momordicae. Taken together, our study shows that the FomYjeF gene affects sporulation, mycelial growth, pathogenicity, and ROS accumulation in F. oxysporum. The results of this study provide a novel insight into the function of FomYjeF participation in the pathogenicity of F. oxysporum f. sp. momordicae.


Assuntos
Fusarium , Virulência/genética , Espécies Reativas de Oxigênio/metabolismo , Doenças das Plantas/microbiologia
4.
Arch Virol ; 168(1): 15, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593368

RESUMO

Phaeobotryon rhois is an important pathogenic fungus that causes dieback and canker disease of woody hosts. A novel mycovirus, tentatively named "Phaeobotryon rhois victorivirus 1" (PrVV1), was identified in P. rhois strain SX8-4. The PrVV1 has a double-stranded RNA (dsRNA) genome that is 5,224 base pairs long and contains two open reading frames (ORF1 and ORF2), which overlap at a AUGA sequence. ORF1 encodes a polypeptide of 786 amino acids (aa) that contains the conserved coat protein (CP) domain of victoriviruses, while ORF2, encodes a large polypeptide of 826 aa that contains the conserved RNA-dependent RNA polymerase (RdRp) domain of victoriviruses. Our analysis of genomic structure, homology, and phylogeny indicated that PrVV1 is a novel member of the genus Victorivirus in the family Totiviridae. This is the first report of the complete genome sequence of a victorivirus that infects P. rhois.


Assuntos
Ascomicetos , Micovírus , Vírus de RNA , Totiviridae , Proteínas Virais/genética , Proteínas Virais/química , Ascomicetos/genética , Genômica , Genoma Viral , Filogenia , Fases de Leitura Aberta , RNA de Cadeia Dupla , RNA Viral/genética , RNA Viral/química , Micovírus/genética , Vírus de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...