Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
BMC Neurol ; 24(1): 196, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862898

RESUMO

BACKGROUND: Following a stroke, patients may suffer from alterations in the perception of their own body due to an acquired deficit in body representations. While such changes may impact their quality of life as well as recovery, they are not systematically assessed in clinical practice. This study aims at providing a better understanding of the rate, evolution, and impact on recovery of upper limb (UL) body perceptions (BPs) alterations following stroke. In addition, we will investigate associations among BPs alterations items, their associations with the sensorimotor functions, UL activity, damages in brain structure and connectivity. METHODS: We developed a new tool named ALPQ (for Affected Limb Perception Questionnaire) to address the present study objectives. It assesses subjective alterations in the perception of the affected UL following stroke, by measuring several dimensions, namely: anosognosia for hemiplegia, anosodiaphoria for hemiplegia, hemiasomatognosia, somatoparaphrenia, personification of the affected limb, illusion of modification of physical characteristics (temperature, weight, length), illusory movements, super- or undernumerary limb, UL disconnection, misoplegia, and involuntary movement. This study combines a cross-sectional and longitudinal design. The completed data sample will include a minimum of 60 acute and 100 sub-acute stroke patients. When possible, patients are followed up to the chronic stage. Complementary evaluations are administered to assess patients' sensorimotor and cognitive functions as well as UL activity, and brain lesions will be analysed. DISCUSSION: This study will provide a better understanding of BPs alterations following stroke: their rate and evolution, as well as their associations with sensorimotor deficit, cognitive profile and UL activity, brain lesions and recovery. Ultimately, the results could support the personalization of rehabilitation strategy according to patients' UL perception to maximize their recovery. STUDY REGISTRATION: The protocol for this study has been pre-registered on the Open Science Framework on July the 7th, 2021: https://osf.io/p6v7f .


Assuntos
Acidente Vascular Cerebral , Extremidade Superior , Humanos , Acidente Vascular Cerebral/psicologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Extremidade Superior/fisiopatologia , Inquéritos e Questionários , Estudos Transversais , Imagem Corporal/psicologia , Feminino , Masculino , Estudos Longitudinais , Pessoa de Meia-Idade , Reabilitação do Acidente Vascular Cerebral/métodos , Idoso , Adulto
2.
Artigo em Inglês | MEDLINE | ID: mdl-38900611

RESUMO

In the context of neurorehabilitation, there have been rapid and continuous improvements in sensors-based clinical tools to quantify limb performance. As a result of the increasing integration of technologies in the assessment procedure, the need to integrate evidence-based medicine with benchmarking has emerged in the scientific community. In this work, we present the experimental validation of our previously proposed benchmarking scheme for upper limb capabilities in terms of repeatability, reproducibility, and clinical meaningfulness. We performed a prospective multicenter study on neurologically intact young and elderly subjects and post-stroke patients while recording kinematics and electromyography. 60 subjects (30 young healthy, 15 elderly healthy, and 15 post-stroke) completed the benchmarking protocol. The framework was repeatable among different assessors and instrumentation. Age did not significantly impact the performance indicators of the scheme for healthy subjects. In post-stroke subjects, the movements presented decreased smoothness and speed, the movement amplitude was reduced, and the muscular activation showed lower power and lower intra-limb coordination. We revised the original framework reducing it to three motor skills, and we extracted 14 significant performance indicators with a good correlation with the ARAT clinical scale. The applicability of the scheme is wide, and it may be considered a valuable tool for upper limb functional evaluation in the clinical routine.


Assuntos
Benchmarking , Eletromiografia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Extremidade Superior , Humanos , Masculino , Feminino , Projetos Piloto , Reabilitação do Acidente Vascular Cerebral/métodos , Eletromiografia/métodos , Adulto , Extremidade Superior/fisiopatologia , Idoso , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Fenômenos Biomecânicos , Estudos Prospectivos , Adulto Jovem , Voluntários Saudáveis , Movimento/fisiologia , Destreza Motora/fisiologia , Algoritmos
3.
J Neural Eng ; 21(1)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38271712

RESUMO

Objective.Electrical spinal cord stimulation (SCS) has emerged as a promising therapy for recovery of motor and autonomic dysfunctions following spinal cord injury (SCI). Despite the rise in studies using SCS for SCI complications, there are no standard guidelines for reporting SCS parameters in research publications, making it challenging to compare, interpret or reproduce reported effects across experimental studies.Approach.To develop guidelines for minimum reporting standards for SCS parameters in pre-clinical and clinical SCI research, we gathered an international panel of expert clinicians and scientists. Using a Delphi approach, we developed guideline items and surveyed the panel on their level of agreement for each item.Main results.There was strong agreement on 26 of the 29 items identified for establishing minimum reporting standards for SCS studies. The guidelines encompass three major SCS categories: hardware, configuration and current parameters, and the intervention.Significance.Standardized reporting of stimulation parameters will ensure that SCS studies can be easily analyzed, replicated, and interpreted by the scientific community, thereby expanding the SCS knowledge base and fostering transparency in reporting.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Humanos , Estimulação da Medula Espinal/métodos , Medula Espinal
4.
Brain Topogr ; 37(3): 475-478, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37195492

RESUMO

Stroke recovery trajectories vary substantially. The need for tracking and prognostic biomarkers in stroke is utmost for prognostic and rehabilitative goals: electroencephalography (EEG) advanced signal analysis may provide useful tools toward this aim. EEG microstates quantify changes in configuration of neuronal generators of short-lasting periods of coordinated synchronized communication within large-scale brain networks: this feature is expected to be impaired in stroke. To characterize the spatio-temporal signatures of EEG microstates in stroke survivors in the acute/subacute phase, EEG microstate analysis was performed in 51 first-ever ischemic stroke survivors [(28-82) years, 24 with right hemisphere (RH) lesion] who underwent a resting-state EEG recording in the acute and subacute phase (from 48 h up to 42 days after the event). Microstates were characterized based on 4 parameters: global explained variance (GEV), mean duration, occurrences per second, and percentage of coverage. Wilcoxon Rank Sum tests were performed to compare features of each microstate across the two groups [i.e., left hemisphere (LH) and right hemisphere (RH) stroke survivors]. The canonical microstate map D, characterized by a mostly frontal topography, displayed greater GEV, occurrence per second, and percentage of coverage in LH than in RH stroke survivors (p < 0.05). The EEG microstate map B, with a left-frontal to right-posterior topography, and F, with an occipital-to-frontal topography, exhibited a greater GEV in RH than in LH stroke survivors (p = 0.015). EEG microstates identified specific topographic maps which characterize stroke survivors' lesioned hemisphere in the acute and early subacute phase. Microstate features offer an additional tool to identify different neural reorganization.


Assuntos
Eletroencefalografia , Acidente Vascular Cerebral , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico , Prognóstico
5.
Healthcare (Basel) ; 11(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37628480

RESUMO

In clinical scenarios, the use of biomedical sensors, devices and multi-parameter assessments is fundamental to provide a comprehensive portrait of patients' state, in order to adapt and personalize rehabilitation interventions and support clinical decision-making. However, there is a huge gap between the potential of the multidomain techniques available and the limited practical use that is made in the clinical scenario. This paper reviews the current state-of-the-art and provides insights into future directions of multi-domain instrumental approaches in the clinical assessment of patients involved in neuromotor rehabilitation. We also summarize the main achievements and challenges of using multi-domain approaches in the assessment of rehabilitation for various neurological disorders affecting motor functions. Our results showed that multi-domain approaches combine information and measurements from different tools and biological signals, such as kinematics, electromyography (EMG), electroencephalography (EEG), near-infrared spectroscopy (NIRS), and clinical scales, to provide a comprehensive and objective evaluation of patients' state and recovery. This multi-domain approach permits the progress of research in clinical and rehabilitative practice and the understanding of the pathophysiological changes occurring during and after rehabilitation. We discuss the potential benefits and limitations of multi-domain approaches for clinical decision-making, personalized therapy, and prognosis. We conclude by highlighting the need for more standardized methods, validation studies, and the integration of multi-domain approaches in clinical practice and research.

6.
Arch Phys Med Rehabil ; 104(4): 597-604, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36332677

RESUMO

OBJECTIVE: To develop and validate a quick observational clinical tool, the Functional ASsessment Test for Upper Limb (FAST-UL), for the evaluation of upper limb impairment in goal-directed functional-oriented motor tasks after stroke. DESIGN: Observational, cross-sectional, psychometric study. SETTING: Inpatient and outpatient rehabilitation clinic. PARTICIPANTS: A total of 188 post-stroke survivors (mean age 65.2±17.7 years, 61% men, 48% with ischemic stroke and 66% in the sub-acute phase; N=188). INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Principal component analysis and Rasch analysis through a Partial Credit Model were used to assess the structure and psychometric properties of the 5 items of the FAST-UL (Hand to Mouth [HtM], Reach to Target, Prono-Supination, Grasp and Release, and Pinch and Release [PaR]). RESULTS: The Cronbach's α equal to 0.96 was indicative of an acceptable internal consistency; the reliability, as measured through the Person Separation Reliability equal to 0.87, was good. The FAST-UL tool was unidimensional. All the FAST-UL items were found to fit well the Rasch measurement model. The easiest to perform FAST-UL item was the HtM movement while the most difficult was the PaR movement. CONCLUSIONS: The FAST-UL is a quick, easy-to-administer observational assessment tool of upper limb motor impairment in post-stroke survivors with good item-level psychometric properties.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Reprodutibilidade dos Testes , Estudos Transversais , Avaliação da Deficiência , Extremidade Superior , Acidente Vascular Cerebral/complicações , Psicometria
7.
Microorganisms ; 12(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38257864

RESUMO

Ischemic stroke (IS) can be caused by perturbations of the gut-brain axis. An imbalance in the gut microbiota (GM), or dysbiosis, may be linked to several IS risk factors and can influence the brain through the production of different metabolites, such as short-chain fatty acids (SCFAs), indole and derivatives. This study examines ecological changes in the GM and its metabolic activities after stroke. Fecal samples of 10 IS patients were compared to 21 healthy controls (CTRLs). GM ecological profiles were generated via 16S rRNA taxonomy as functional profiles using metabolomics analysis performed with a gas chromatograph coupled to a mass spectrometer (GC-MS). Additionally fecal zonulin, a marker of gut permeability, was measured using an enzyme-linked immuno assay (ELISA). Data were analyzed using univariate and multivariate statistical analyses and correlated with clinical features and biochemical variables using correlation and nonparametric tests. Metabolomic analyses, carried out on a subject subgroup, revealed a high concentration of fecal metabolites, such as SCFAs, in the GM of IS patients, which was corroborated by the enrichment of SCFA-producing bacterial genera such as Bacteroides, Christensellaceae, Alistipes and Akkermansia. Conversely, indole and 3-methyl indole (skatole) decreased compared to a subset of six CTRLs. This study illustrates how IS might affect the gut microbial milieu and may suggest potential microbial and metabolic biomarkers of IS. Expanded populations of Akkermansia and enrichment of acetic acid could be considered potential disease phenotype signatures.

8.
IEEE Open J Eng Med Biol ; 4: 275-277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38196974

RESUMO

The aim of rehabilitation after neurological damage is functional recovery, which includes motor, sensory, and cognitive aspects, which are closely interrelated [22].

9.
IEEE Open J Eng Med Biol ; 4: 292-299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38196973

RESUMO

Objective: The aim of the present study is to explore whether a single session of transcutaneous Vagus Nerve Stimulation (tVNS) can enhance the ipsilesional, and contralesional upper limb motor functions as well as cognitive functions in stroke patients. The effects of the stimulation were evaluated through two different tasks: the box and blocks test (BB), indexing manual dexterity, and the Go/No-go task, a visuomotor paradigm used to assess both motor readiness and response inhibition. Tests were administered without tVNS, during tVNS and during sham tVNS. Results: The BB showed a statistical difference for both contralesional side (p = 0.05) between Basal-Real condition (p = 0.042) and ipsilesional side (p = 0.001) between Basal-Real (p = 0.008) and for Real-Sham (p = 0.005). Any statistical difference was found for the mean latencies in the three conditions of the Go/No-go test. Conclusion: A single session of tVNS seems to improve upper limb motor functions but not cognitive functions in post-stroke patients, despite a positive trend was detected.

10.
IEEE Open J Eng Med Biol ; 4: 278-283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38196980

RESUMO

OBJECTIVE: Human figure drawings are widely used in clinical practice as a qualitative indication of Body Representations (BRs) alterations in stroke patients. The objective of this study is to present and validate the use of a new app called QDraw for the quantitative analysis of drawings and to investigate whether this analysis can reveal distortions of BRs in chronic stroke patients. RESULTS: QDraw has proven to generate reliable data as compared to manual scoring and in terms of inter-rater reliability, as shown by the high correlation coefficients. Moreover, human figure drawings from chronic stroke patients demonstrated a distortion of upper limb perception, as shown by a significantly higher arm length asymmetry compared to legs, whereas no difference was found in healthy controls. CONCLUSIONS: The present study supports the use of quantitative, digital methods (the QDraw app) to analyze human figure drawings as a tool to evaluate BRs distortions in stroke patients.

11.
Sci Rep ; 12(1): 19343, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369462

RESUMO

This study was designed to investigate the feasibility and the potential effects on walking performance of a short gait training with a novel impairment-specific hip assistance (iHA) through a bilateral active pelvis orthosis (APO) in patients with acquired brain injury (ABI). Fourteen subjects capable of independent gait and exhibiting mild-to-moderate gait deficits, due to an ABI, were enrolled. Subjects presenting deficit in hip flexion and/or extension were included and divided into two groups based on the presence (group A, n = 6) or absence (group B, n = 8) of knee hyperextension during stance phase of walking. Two iHA-based profiles were developed for the groups. The protocol included two overground gait training sessions using APO, and two evaluation sessions, pre and post training. Primary outcomes were pre vs. post-training walking distance and steady-state speed in the 6-min walking test. Secondary outcomes were self-selected speed, joint kinematics and kinetics, gait symmetry and forward propulsion, assessed through 3D gait analysis. Following the training, study participants significantly increased the walked distance and average steady-state speed in the 6-min walking tests, both when walking with and without the APO. The increased walked distance surpassed the minimal clinically important difference for groups A and B, (respectively, 42 and 57 m > 34 m). In group A, five out of six subjects had decreased knee hyperextension at the post-training session (on average the peak of the knee extension angle was reduced by 36%). Knee flexion during swing phase increased, by 16% and 31%, for A and B groups respectively. Two-day gait training with APO providing iHA was effective and safe in improving walking performance and knee kinematics in ABI survivors. These preliminary findings suggest that this strategy may be viable for subject-specific post-ABI gait rehabilitation.


Assuntos
Lesões Encefálicas , Exoesqueleto Energizado , Humanos , Estudos de Viabilidade , Marcha , Caminhada , Fenômenos Biomecânicos
12.
Front Rehabil Sci ; 3: 943397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189026

RESUMO

In hemiplegic patients with stroke, investigating the ipsilesional limb may shed light on the upper limb motor control, impairments and mechanisms of functional recovery. Usually investigation of motor impairment and rehabilitative interventions in patients are performed only based on the contralesional limb. Previous studies found that also the ipsilesional limb presents motor deficits, mostly evaluated with clinical scales which could lack of sensibility. To quantitatively evaluate the performance of the ipsilesional limb in patient with stroke, we conducted an observational study in which 49 hemiplegic patients were enrolled, divided in subgroups based on the severity of impairment of the contralesional limb, and assessed with a kinematic, dynamic and motor control evaluation protocol on their ipsilesional upper limb during reaching movements. Measurements were repeated in the acute and subacute phases and compared to healthy controls. Our results showed that the ipsilesional limb presented lower kinematic and dynamic performances with respect to the healthy controls. Patients performed the movements slower and with a reduced range of motion, indicating a difficulty in controlling the motion of the arm. The energy and the power outputs were lower in both shoulder and elbow joint with a high significance level, confirming the limitation found in kinematics. Moreover, we showed that motor deficits were higher in the acute phase with respect to the subacute one and we found higher significant differences in the group with a more severe contralesional limb impairment. Ipsilesional upper limb biomechanics adds significant and more sensible measures for assessments based on multi-joints dynamics, providing a better insight on the upper limb motor control after stroke. These results could have clinical implications while evaluating and treating ipsilesional and contralesional upper limb impairments and dysfunctions in patients with stroke.

13.
Brain Commun ; 4(4): fcac179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35950092

RESUMO

The continuous stream of multisensory information between the brain and the body during body-environment interactions is crucial to maintain the updated representation of the perceived dimensions of body parts (metric body representation) and the space around the body (the peripersonal space). Such flow of multisensory signals is often limited by upper limb sensorimotor deficits after stroke. This would suggest the presence of systematic distortions of metric body representation and peripersonal space in chronic patients with persistent sensorimotor deficits. We assessed metric body representation and peripersonal space representation in 60 chronic stroke patients with unilateral upper limb motor deficits, in comparison with age-matched healthy controls. We also administered a questionnaire capturing explicit feelings towards the affected limb. These novel measures were analysed with respect to patients' clinical profiles and brain lesions to investigate the neural and functional origin of putative deficits. Stroke patients showed distortions in metric body representation of the affected limb, characterized by an underestimation of the arm length and an alteration of the arm global shape. A descriptive lesion analysis (subtraction analysis) suggests that these distortions may be more frequently associated with lesions involving the superior corona radiata and the superior frontal gyrus. Peripersonal space representation was also altered, with reduced multisensory facilitation for stimuli presented around the affected limb. These deficits were more common in patients reporting pain during motion. Explorative lesion analyses (subtraction analysis, disconnection maps) suggest that the peripersonal space distortions would be more frequently associated with lesions involving the parietal operculum and white matter frontoparietal connections. Moreover, patients reported altered feelings towards the affected limb, which were associated with right brain damage, proprioceptive deficits and a lower cognitive profile. These results reveal implicit and explicit distortions involving metric body representation, peripersonal space representation and the perception of the affected limb in chronic stroke patients. These findings might have important clinical implications for the longitudinal monitoring and the treatments of often-neglected deficits in body perception and representation.

14.
Med ; 3(1): 58-74.e10, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35590144

RESUMO

BACKGROUND: A conventional treatment outcome is suboptimal for sensory impairments in stroke patients. Novel approaches based on electrical stimulation or robotics are proposed as an adjuvant for rehabilitation, though their efficacy for motor, sensory, and body representation recovery have not been tested. METHODS: Sixty chronic stroke patients with unilateral motor deficits were included in a pseudo-randomized open-label multi-arm control trial (ClinicalTrials.gov: NCT03349138). We tested the effects of a robotic glove (GloReha [GR]) and a new neuromuscular electrical stimulation system (Helping Hand [HH]) and compared them with conventional treatment (CT) in restoring motor and sensory functions and the affected limb perception. HH was designed to concurrently deliver peripheral motor activation and enhanced cutaneous sensation. Patients were split in four dose-matched groups: CT, GR, HH, and GRHH (receiving 50% GR and 50% HH). Assessments were performed at inclusion, halfway, end of treatment (week 9), and follow-up (week 13). FINDINGS: HH provided an earlier benefit, quantified by the Motricity Index (MI), than GR. At the end of the treatment, the amelioration was higher in groups GRHH and HH and extended to somatosensory functions. These benefits persisted at the follow-up. GRHH and HH also improved the perceived dimensions and altered feeling toward the affected limb. Interestingly, the reduction of altered feelings correlated with MI improvements and depended on the amount of HH. CONCLUSIONS: We suggest that HH concurrently stimulates sensory and motor systems by generating an enhanced cutaneous sensation, coherent in location with the elicited motor recruitment, leading to ameliorated sensorimotor functions and bodily perceptions in stroke patients. FUNDING: This work was supported by a Foundation advised by CARIGEST, by Fondazione CARIPLO, by the SNSF NCCR Robotics, and by the Bertarelli Foundation.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Imagem Corporal , Estimulação Elétrica , Humanos , Recuperação de Função Fisiológica/fisiologia , Sensação , Acidente Vascular Cerebral/terapia , Reabilitação do Acidente Vascular Cerebral/métodos , Sobreviventes , Extremidade Superior
15.
Front Physiol ; 13: 862207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450158

RESUMO

Brain plasticity and functional reorganization are mechanisms behind functional motor recovery of patients after an ischemic stroke. The study of resting-state motor network functional connectivity by means of EEG proved to be useful in investigating changes occurring in the information flow and find correlation with motor function recovery. In the literature, most studies applying EEG to post-stroke patients investigated the undirected functional connectivity of interacting brain regions. Quite recently, works started to investigate the directionality of the connections and many approaches or features have been proposed, each of them being more suitable to describe different aspects, e.g., direct or indirect information flow between network nodes, the coupling strength or its characteristic oscillation frequency. Each work chose one specific measure, despite in literature there is not an agreed consensus, and the selection of the most appropriate measure is still an open issue. In an attempt to shed light on this methodological aspect, we propose here to combine the information of direct and indirect coupling provided by two frequency-domain measures based on Granger's causality, i.e., the directed coherence (DC) and the generalized partial directed coherence (gPDC), to investigate the longitudinal changes of resting-state directed connectivity associated with sensorimotor rhythms α and ß, occurring in 18 sub-acute ischemic stroke patients who followed a rehabilitation treatment. Our results showed a relevant role of the information flow through the pre-motor regions in the reorganization of the motor network after the rehabilitation in the sub-acute stage. In particular, DC highlighted an increase in intra-hemispheric coupling strength between pre-motor and primary motor areas, especially in ipsi-lesional hemisphere in both α and ß frequency bands, whereas gPDC was more sensitive in the detection of those connection whose variation was mostly represented within the population. A decreased causal flow from contra-lesional premotor cortex towards supplementary motor area was detected in both α and ß frequency bands and a significant reinforced inter-hemispheric connection from ipsi to contra-lesional pre-motor cortex was observed in ß frequency. Interestingly, the connection from contra towards ipsilesional pre-motor area correlated with upper limb motor recovery in α band. The usage of two different measures of directed connectivity allowed a better comprehension of those coupling changes between brain motor regions, either direct or mediated, which mostly were influenced by the rehabilitation, revealing a particular involvement of the pre-motor areas in the cerebral functional reorganization.

16.
Eur J Phys Rehabil Med ; 58(3): 342-351, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34498832

RESUMO

BACKGROUND: A comprehensive evaluation of dysarthria is required to make an accurate differential diagnosis with other communication disorders and plan effective rehabilitation programs. The Frenchay Dysarthria Assessment-2 (FDA-2) is a valid, reliable and widely used protocol for the assessment of dysarthria. An Italian version of the FDA-2 is currently lacking. AIM: To perform a cross-cultural adaptation of the FDA-2 in Italian and to validate the Italian version of the FDA-2. DESIGN: Validation study. SETTING: Inpatient rehabilitation center. POPULATION: 69 patients with dysarthria and 112 healthy controls. METHODS: The FDA-2 was translated and cross-culturally adapted to Italian. The validation study was carried out in 4 steps: (1) 42 audio-recorded samples of FDA-2 items from 11 patients with dysarthria were independently assessed by 7 speech and language pathologists for interrater reliability and re-assessed after 6 weeks for intrarater reliability; (2) 11 patients were simultaneously assessed by 3 speech and language therapists for interrater reliability of the whole Italian version of the FDA-2 and re-assessed within 24 hours for test-retest reliability; (3) the Italian version of the FDA-2 was administered to 112 healthy volunteers to gain normative data; (4) 49 patients with different types of dysarthria were assessed using the Italian version of the FDA-2, the Therapy Outcome Measure impairment scale and the Robertson Profile for the validity analysis. RESULTS: Interrater and intrarater reliability ranged from good to excellent (ICC >0.75) except for 3 audio-recorded items. The overall protocol demonstrated excellent (ICC >0.9) inter-rater and test-retest reliability for all the sections and the total score. Normative data were gained for 6 age groups. For the validity analysis, a statistically significant difference was found between dysarthric patients and healthy subjects for all sections and the total score. The FDA-2 significantly correlated to the therapy outcome measure (r=0.75) and the Robertson Profile (r=0.81). CONCLUSIONS: The Italian version of the FDA-2 yield satisfactory reliability and validity, comparable to the psychometric properties of the original version. CLINICAL REHABILITATION IMPACT: Speech and language pathologists can rely on a valid and reliable tool in Italian for the assessment of dysarthria in both clinical and research practice.


Assuntos
Comparação Transcultural , Disartria , Disartria/diagnóstico , Humanos , Itália , Psicometria , Reprodutibilidade dos Testes , Inquéritos e Questionários , Tradução
17.
Front Neurorobot ; 15: 733738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899227

RESUMO

The recovery of symmetric and efficient walking is one of the key goals of a rehabilitation program in patients with stroke. The use of overground exoskeletons alongside conventional gait training might help foster rhythmic muscle activation in the gait cycle toward a more efficient gait. About twenty-nine patients with subacute stroke have been recruited and underwent either conventional gait training or experimental training, including overground gait training using a wearable powered exoskeleton alongside conventional therapy. Before and after the rehabilitation treatment, we assessed: (i) gait functionality by means of clinical scales combined to obtain a Capacity Score, and (ii) gait neuromuscular lower limbs pattern using superficial EMG signals. Both groups improved their ability to walk in terms of functional gait, as detected by the Capacity Score. However, only the group treated with the robotic exoskeleton regained a controlled rhythmic neuromuscular pattern in the proximal lower limb muscles, as observed by the muscular activation analysis. Coherence analysis suggested that the control group (CG) improvement was mediated mainly by spinal cord control, while experimental group improvements were mediated by cortical-driven control. In subacute stroke patients, we hypothesize that exoskeleton multijoint powered fine control overground gait training, alongside conventional care, may lead to a more fine-tuned and efficient gait pattern.

18.
Front Neurorobot ; 15: 709731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690732

RESUMO

For decades, powered exoskeletons have been considered for possible employment in rehabilitation and personal use. Yet, these devices are still far from addressing the needs of users. Here, we introduce TWIN, a novel modular lower limb exoskeleton for personal use of spinal-cord injury (SCI) subjects. This system was designed according to a set of user requirements (lightweight and autonomous portability, quick and autonomous donning and setup, stability when standing/walking, cost effectiveness, long battery life, comfort, safety) which emerged during participatory investigations that organically involved patients, engineers, designers, physiatrists, and physical therapists from two major rehabilitation centers in Italy. As a result of this user-centered process, TWIN's design is based on a variety of small mechatronic modules which are meant to be easily assembled and donned on or off by the user in full autonomy. This paper presents the development of TWIN, an exoskeleton for personal use of SCI users, and the application of user-centered design methods that are typically adopted in medical device industry, for its development. We can state that this approach revealed to be extremely effective and insightful to direct and continuously adapt design goals and activities toward the addressment of user needs, which led to the development of an exoskeleton with modular mechatronics and novel lateral quick release systems. Additionally, this work includes the preliminary assessment of this exoskeleton, which involved healthy volunteers and a complete SCI patient. Tests validated the mechatronics of TWIN and emphasized its high potential in terms of system usability for its intended use. These tests followed procedures defined in existing standards in usability engineering and were part of the formative evaluation of TWIN as a premise to the summative evaluation of its usability as medical device.

19.
Entropy (Basel) ; 23(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064732

RESUMO

Stroke is the commonest cause of disability. Novel treatments require an improved understanding of the underlying mechanisms of recovery. Fractal approaches have demonstrated that a single metric can describe the complexity of seemingly random fluctuations of physiological signals. We hypothesize that fractal algorithms applied to electroencephalographic (EEG) signals may track brain impairment after stroke. Sixteen stroke survivors were studied in the hyperacute (<48 h) and in the acute phase (∼1 week after stroke), and 35 stroke survivors during the early subacute phase (from 8 days to 32 days and after ∼2 months after stroke): We compared resting-state EEG fractal changes using fractal measures (i.e., Higuchi Index, Tortuosity) with 11 healthy controls. Both Higuchi index and Tortuosity values were significantly lower after a stroke throughout the acute and early subacute stage compared to healthy subjects, reflecting a brain activity which is significantly less complex. These indices may be promising metrics to track behavioral changes in the very early stage after stroke. Our findings might contribute to the neurorehabilitation quest in identifying reliable biomarkers for a better tailoring of rehabilitation pathways.

20.
Brain Sci ; 11(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466749

RESUMO

BACKGROUND: Overground Robot-Assisted Gait Training (o-RAGT) provides intensive gait rehabilitation. This study investigated the efficacy of o-RAGT in subacute stroke subjects, compared to conventional gait training. METHODS: A multicenter randomized controlled trial was conducted on 75 subacute stroke subjects (38 in the Experimental Group (EG) and 37 in the Control Group (CG)). Both groups received 15 sessions of gait training (5 sessions/week for 60 min) and daily conventional rehabilitation. The subjects were assessed at the beginning (T1) and end (T2) of the training period with the primary outcome of a 6 Minutes Walking Test (6MWT), the Modified Ashworth Scale of the Affected lower Limb (MAS-AL), the Motricity Index of the Affected lower Limb (MI-AL), the Trunk Control Test (TCT), Functional Ambulation Classification (FAC), a 10 Meters Walking Test (10MWT), the modified Barthel Index (mBI), and the Walking Handicap Scale (WHS). RESULTS: The 6MWT increased in both groups, which was confirmed by both frequentist and Bayesian analyses. Similar outcomes were registered in the MI-AL, 10MWT, mBI, and MAS-AL. The FAC and WHS showed a significant number of subjects improving in functional and community ambulation in both groups at T2. CONCLUSIONS: The clinical effects of o-RAGT were similar to conventional gait training in subacute stroke subjects. The results obtained in this study are encouraging and suggest future clinical trials on the topic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...