Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Trends Cell Biol ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38262893

RESUMO

The molecular mechanisms underlying SARS-CoV-2 host cell invasion and life cycle have been studied extensively in recent years, with a primary focus on viral entry and internalization with the aim of identifying antiviral therapies. By contrast, our understanding of the molecular mechanisms involved in the later steps of the coronavirus life cycle is relatively limited. In this review, we describe what is known about the host factors and viral proteins involved in the replication, assembly, and egress phases of SARS-CoV-2, which induce significant host membrane rearrangements. We also discuss the limits of the current approaches and the knowledge gaps still to be addressed.

2.
Traffic ; 25(1): e12924, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37963679

RESUMO

The skeletal dysplasia spondyloepiphyseal dysplasia tarda (SEDT) is caused by mutations in the TRAPPC2 gene, which encodes Sedlin, a component of the trafficking protein particle (TRAPP) complex that we have shown previously to be required for the export of type II collagen (Col2) from the endoplasmic reticulum. No vertebrate model for SEDT has been generated thus far. To address this gap, we generated a Sedlin knockout animal by mutating the orthologous TRAPPC2 gene (olSedl) of Oryzias latipes (medaka) fish. OlSedl deficiency leads to embryonic defects, short size, diminished skeletal ossification and altered Col2 production and secretion, resembling human defects observed in SEDT patients. Moreover, SEDT knock-out animals display photoreceptor degeneration and gut morphogenesis defects, suggesting a key role for Sedlin in the development of these organs. Thus, by studying Sedlin function in vivo, we provide evidence for a mechanistic link between TRAPPC2-mediated membrane trafficking, Col2 export, and developmental disorders.


Assuntos
Oryzias , Osteocondrodisplasias , Animais , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oryzias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mutação , Osteocondrodisplasias/genética
3.
Nature ; 606(7915): 761-768, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35551511

RESUMO

SARS-CoV-2, like other coronaviruses, builds a membrane-bound replication organelle to enable RNA replication1. The SARS-CoV-2 replication organelle is composed of double-membrane vesicles (DMVs) that are tethered to the endoplasmic reticulum (ER) by thin membrane connectors2, but the viral proteins and the host factors involved remain unknown. Here we identify the viral non-structural proteins (NSPs) that generate the SARS-CoV-2 replication organelle. NSP3 and NSP4 generate the DMVs, whereas NSP6, through oligomerization and an amphipathic helix, zippers ER membranes and establishes the connectors. The NSP6(ΔSGF) mutant, which arose independently in the Alpha, Beta, Gamma, Eta, Iota and Lambda variants of SARS-CoV-2, behaves as a gain-of-function mutant with a higher ER-zippering activity. We identified three main roles for NSP6: first, to act as a filter in communication between the replication organelle and the ER, by allowing lipid flow but restricting the access of ER luminal proteins to the DMVs; second, to position and organize DMV clusters; and third, to mediate contact with lipid droplets (LDs) through the LD-tethering complex DFCP1-RAB18. NSP6 thus acts as an organizer of DMV clusters and can provide a selective means of refurbishing them with LD-derived lipids. Notably, both properly formed NSP6 connectors and LDs are required for the replication of SARS-CoV-2. Our findings provide insight into the biological activity of NSP6 of SARS-CoV-2 and of other coronaviruses, and have the potential to fuel the search for broad antiviral agents.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , Proteínas não Estruturais Virais , Replicação Viral , COVID-19/virologia , Proteínas de Transporte , Linhagem Celular , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Humanos , Gotículas Lipídicas , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , Proteínas não Estruturais Virais/metabolismo , Proteínas rab de Ligação ao GTP
5.
Sci Rep ; 9(1): 12082, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427655

RESUMO

Endogenous reactive oxygen species (ROS) are by-products of the aerobic metabolism of cells and have an important signalling role as secondary messengers in various physiological processes, including cell growth and development. However, the excessive production of ROS, as well as the exposure to exogenous ROS, can cause protein oxidation, lipid peroxidation and DNA damages leading to cell injuries. ROS accumulation has been associated to the development of health disorders such as neurodegenerative and cardiovascular diseases, inflammatory bowel disease and cancer. We report that spores of strain SF185, a human isolate of Bacillus megaterium, have antioxidant activity on Caco-2 cells exposed to hydrogen peroxide and on a murine model of dextran sodium sulfate-induced oxidative stress. In both model systems spores exert a protective state due to their scavenging action: on cells, spores reduce the amount of intracellular ROS, while in vivo the pre-treatment with spores protects mice from the chemically-induced damages. Overall, our results suggest that treatment with SF185 spores prevents or reduces the damages caused by oxidative stress. The human origin of SF185, its strong antioxidant activity, and its protective effects led to propose the spore of this strain as a new probiotic for gut health.


Assuntos
Bacillus megaterium/metabolismo , Dano ao DNA/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Esporos Bacterianos/química , Animais , Bacillus megaterium/efeitos dos fármacos , Células CACO-2 , Sulfato de Dextrana/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/metabolismo
6.
Sci Rep ; 9(1): 9059, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227764

RESUMO

The survival of cells exposed to adverse environmental conditions entails various alterations in cellular function including major changes in the transcriptome as well as a radical reprogramming of protein translation. While in mammals this process has been extensively studied, stress responses in non-mammalian vertebrates remain poorly understood. One of the key cellular responses to many different types of stressors is the transient generation of structures called stress granules (SGs). These represent cytoplasmic foci where untranslated mRNAs are sorted or processed for re-initiation, degradation, or packaging into mRNPs. Here, using the evolutionarily conserved Y-box binding protein 1 (YB-1) and G3BP1 as markers, we have studied the formation of stress granules in zebrafish (D. rerio) in response to different environmental stressors. We show that following heat shock, zebrafish cells, like mammalian cells, form stress granules which contain both YB-1 and G3BP1 proteins. Moreover, zfYB-1 knockdown compromises cell viability, as well as recruitment of G3BP1 into SGs, under heat shock conditions highlighting the essential role played by YB-1 in SG assembly and cell survival. However, zebrafish PAC2 cells do not assemble YB-1-positive stress granules upon oxidative stress induced by arsenite, copper or hydrogen peroxide treatment. This contrasts with the situation in human cells where SG formation is robustly induced by exposure to oxidative stressors. Thus, our findings point to fundamental differences in the mechanisms whereby mammalian and zebrafish cells respond to oxidative stress.


Assuntos
Adaptação Fisiológica , Grânulos Citoplasmáticos/fisiologia , Estresse Oxidativo , Proteína 1 de Ligação a Y-Box/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Nadadeiras de Animais/metabolismo , Animais , Grânulos Citoplasmáticos/metabolismo , Frações Subcelulares/metabolismo , Peixe-Zebra
7.
Pharmaceuticals (Basel) ; 12(2)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096606

RESUMO

Up until the first half of the 20th century, silver found significant employment in medical applications, particularly in the healing of open wounds, thanks to its antibacterial and antifungal properties. Wound repair is a complex and dynamic biological process regulated by several pathways that cooperate to restore tissue integrity and homeostasis. To facilitate healing, injuries need to be promptly treated. Recently, the interest in alternatives to antibiotics has been raised given the widespread phenomenon of antibiotic resistance. Among these alternatives, the use of silver appears to be a valid option, so a resurgence in its use has been recently observed. In particular, in contrast to ionic silver, colloidal silver, a suspension of metallic silver particles, shows antibacterial activity displaying less or no toxicity. However, the human health risks associated with exposure to silver nanoparticles (NP) appear to be conflicted, and some studies have suggested that it could be toxic in different cellular contexts. These potentially harmful effects of silver NP depend on various parameters including NP size, which commonly range from 1 to 100 nm. In this study, we analyzed the effect of a colloidal silver preparation composed of very small and homogeneous nanoparticles of 0.62 nm size, smaller than those previously tested. We found no adverse effect on the cell proliferation of HaCaT cells, even at high NP concentration. Time-lapse microscopy and indirect immunofluorescence experiments demonstrated that this preparation of colloidal silver strongly increased cell migration, re-modeled the cytoskeleton, and caused recruitment of E-cadherin at cell-cell junctions of human cultured keratinocytes.

8.
Curr Biol ; 28(20): 3229-3243.e4, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30318355

RESUMO

How the environment shapes the function and evolution of DNA repair systems is poorly understood. In a comparative study using zebrafish and the Somalian blind cavefish, Phreatichthys andruzzii, we reveal that during evolution for millions of years in continuous darkness, photoreactivation DNA repair function has been lost in P. andruzzii. We demonstrate that this loss results in part from loss-of-function mutations in pivotal DNA-repair genes. Specifically, C-terminal truncations in P. andruzzii DASH and 6-4 photolyase render these proteins predominantly cytoplasmic, with consequent loss in their functionality. In addition, we reveal a general absence of light-, UV-, and ROS-induced expression of P. andruzzii DNA-repair genes. This results from a loss of function of the D-box enhancer element, which coordinates and enhances DNA repair in response to sunlight. Our results point to P. andruzzii being the only species described, apart from placental mammals, that lacks the highly evolutionary conserved photoreactivation function. We predict that in the DNA repair systems of P. andruzzii, we may be witnessing the first stages in a process that previously occurred in the ancestors of placental mammals during the Mesozoic era.


Assuntos
Cyprinidae/crescimento & desenvolvimento , Reparo do DNA , Evolução Molecular , Proteínas de Peixes/genética , Peixe-Zebra/crescimento & desenvolvimento , Animais , Cyprinidae/fisiologia , Escuridão , Proteínas de Peixes/metabolismo , Peixe-Zebra/fisiologia
9.
Genes (Basel) ; 9(10)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30360431

RESUMO

The prototype cold-shock Y-box binding protein 1 (YB-1) is a multifunctional protein that regulates a variety of fundamental biological processes including cell proliferation and migration, DNA damage, matrix protein synthesis and chemotaxis. The plethora of functions assigned to YB-1 is strictly dependent on its subcellular localization. In resting cells, YB-1 localizes to cytoplasm where it is a component of messenger ribonucleoprotein particles. Under stress conditions, YB-1 contributes to the formation of stress granules (SGs), cytoplasmic foci where untranslated messenger RNAs (mRNAs) are sorted or processed for reinitiation, degradation, or packaging into ribonucleoprotein particles (mRNPs). Following DNA damage, YB-1 translocates to the nucleus and participates in DNA repair thereby enhancing cell survival. Recent data show that YB-1 can also be secreted and YB-1-derived polypeptides are found in plasma of patients with sepsis and malignancies. Here we show that in response to oxidative insults, YB-1 assembly in SGs is associated with an enhancement of YB-1 protein secretion. An enriched fraction of extracellular YB-1 (exYB-1) significantly inhibited proliferation of receiving cells and such inhibition was associated to a G2/M cell cycle arrest, induction of p21WAF and reduction of Np63 protein level. All together, these data show that acute oxidative stress causes sustained release of YB-1 as a paracrine/autocrine signal that stimulate cell cycle arrest.

10.
J Ethnopharmacol ; 211: 285-294, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28964869

RESUMO

Uncaria tomentosa (Willd.) DC. (Rubiacee), also known as uña de gato, is a plant that grows wild in the upper Amazon region of Peru and has been widely used in folk medicine to treat several health conditions including cancer. We have produced an aqueous extract from Uncaria tomentosa (UT-ex) and analyzed its effects on squamous carcinoma cells and immortalized HaCaT keratinocytes. Squamous cell carcinoma (SCC) is an uncontrolled growth of abnormal cells arising in the skin's squamous layer of epidermis. When detected at an early stage, SCCs are almost curable, however, if left untreated, they can penetrate the underlying tissue and become disfiguring. We have evaluated cell proliferation, apoptosis and the level of reactive oxygen species following UT-ex treatment. UT-ex affected cell cycle progression and reduced cell viability in a dose and time-dependent manner. From a mechanistic point of view, this delay in cell growth coincided with the increase of reactive oxygen species (ROS). Furthermore, PARP1 cleavage was associated to the reduction of Y-box binding protein 1 (YB-1) 36kDa, a nuclear prosurvival factor involved in DNA damage repair. These data indicate that UT-ex-induced cell death can be ascribed, at least in part, to its ability both to induce oxidative DNA damage and antagonize the mechanism of DNA repair relying upon YB-1 activity. They also show that non metastatic SCCs are more susceptible to UT-ex treatment than untransformed keratinocytes supporting the use of UT-ex for the treatment of precancerous and early forms of squamous cell carcinomas. Preliminary chemical investigation of UT-ex revealed the presence of hydrophilic low-medium molecular weight metabolites with anticancer potential towards squamous carcinoma cells.


Assuntos
Antineoplásicos/farmacologia , Unha-de-Gato , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo
11.
Exp Cell Res ; 352(2): 175-183, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28137539

RESUMO

The Wound Healing (WH) assay is widely used to investigate cell migration in vitro, in order to reach a better understanding of many physiological and pathological phenomena. Several experimental factors, such as uneven cell density among different samples, can affect the reproducibility and reliability of this assay, leading to a discrepancy in the wound closure kinetics among data sets corresponding to the same cell sample. We observed a linear relationship between the wound closure velocity and cell density, and suggested a novel methodological approach, based on transport phenomena concepts, to overcome this source of error on the analysis of the Wound Healing assay. In particular, we propose a simple scaling of the experimental data, based on the interpretation of the wound closure as a diffusion-reaction process. We applied our methodology to the MDA-MB-231 breast cancer cells, whose motility was perturbed by silencing or over-expressing genes involved in the control of cell migration. Our methodological approach leads to a significant improvement in the reproducibility and reliability in the in vitro WH assay.


Assuntos
Ensaios de Migração Celular/métodos , Reepitelização , Linhagem Celular Tumoral , Ensaios de Migração Celular/instrumentação , Movimento Celular , Humanos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos
12.
Front Pharmacol ; 8: 857, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311913

RESUMO

One important risk factor for the development of asthma is allergen sensitization. Recent increasing evidence suggests a prominent role of mast cells in asthma pathophysiology. Since Palmitoylethanolamide (PEA), an endogenous lipid mediator chemically related to - and co-released with- the endocannabinoid anandamide, behaves as a local autacoid down-regulator of mast cell activation and inflammation, we explored the possible contribution of PEA in allergic sensitization, by using ovalbumin (OVA) as sensitizing agent in the mouse. PEA levels were dramatically reduced in the bronchi of OVA-treated animals. This effect was coupled to a significant up-regulation of CB2 and GPR55 receptors, two of the proposed molecular PEA targets, in bronchi harvested from allergen-sensitized mice. PEA supplementation (10 mg/kg, 15 min before each allergen exposure) prevented OVA-induced bronchial hyperreactivity, but it did not affect IgE plasma increase. On the other hand, PEA abrogated allergen-induced cell recruitment as well as pulmonary inflammation. Evaluation of pulmonary sections evidenced a significant inhibitory action of PEA on pulmonary mast cell recruitment and degranulation, an effect coupled to a reduction of leukotriene C4 production. These findings demonstrate that allergen sensitization negatively affects PEA bronchial levels and suggest that its supplementation has the potential to prevent the development of asthma-like features.

13.
Oncotarget ; 8(4): 6193-6205, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28008157

RESUMO

Correct spatial and temporal control of cell proliferation is of fundamental importance for tissue homeostasis. Its deregulation has been associated with several pathological conditions. In common with almost every aspect of plant and animal biology, cell proliferation is dominated by day-night rhythms generated by the circadian clock. However, our understanding of the crosstalk between the core clock and cell cycle control mechanisms remains incomplete. In this study, using zebrafish as a vertebrate model system, we show that the nuclear localization of the Y-box binding protein 1 (YB-1), a regulator of cyclin expression and a hallmark of certain cancers, is robustly regulated by the circadian clock. We implicate clock-controlled changes in YB-1 SUMOylation as one of the mechanisms regulating its periodic nuclear entry at the beginning of the light phase. Furthermore, we demonstrate that YB-1 nuclear protein is able to downregulate cyclin A2 mRNA expression in zebrafish via its direct interaction with the cyclin A2 promoter. Thus, by acting as a direct target of cyclic posttranslational regulatory mechanisms, YB-1 serves as one bridge between the circadian clock and its cell cycle control.


Assuntos
Ciclo Celular , Proliferação de Células , Ritmo Circadiano , Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Peixe-Zebra/metabolismo , Animais , Sítios de Ligação , Ciclina A2/genética , Ciclina A2/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Regiões Promotoras Genéticas , Interferência de RNA , Transdução de Sinais , Sumoilação , Fatores de Tempo , Transfecção , Proteína 1 de Ligação a Y-Box/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra
14.
Eur J Pharmacol ; 791: 669-674, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27720681

RESUMO

In mice, 2,4-dinitrofluorobenzene (DNFB) induces contact allergic dermatitis (CAD), which, in a late phase, is characterized by mast cell (MC) infiltration and angiogenesis. Palmitoylethanolamide (PEA), an endogenous anti-inflammatory molecule, acts by down-modulating MCs following activation of the cannabinoid CB2 receptor and peroxisome proliferator-activated receptor-α (PPAR-α). We have previously reported the anti-inflammatory effect of PEA in the early stage of CAD. Here, we examined whether PEA reduces the features of the late stage of CAD including MC activation, angiogenesis and itching. After sensitization to DNFB, female C57BL/6J mice underwent to three DNFB challenges at days 5, 12 and 19 and treatments were given at each challenge and for two more days. CAD was expressed as Δ increase in ear thickness between challenged and un-challenged mice. PEA (5mg/kg/i.p.) reduced: i) the DNFB-induced Δ increase; ii) the number of MCs per tissue area; iii) the expression of VEGF and its receptor Flk-1. These effects were reversed by co-administration of AM630 (1mg/kg/i.p.), a CB2 antagonist, but not GW6471 (1mg/kg/i.p.), a PPAR-α antagonist. Finally, PEA reduced the number of ear scratchings 48h after DNFB challenge and this effect was reversed by both CB2 and PPAR-α antagonists, suggesting the involvement of both receptors. PEA, by reducing the features of late stage CAD in mice, may be beneficial in this pathological condition.


Assuntos
Dermatite Alérgica de Contato/complicações , Dermatite Alérgica de Contato/tratamento farmacológico , Etanolaminas/farmacologia , Ácidos Palmíticos/farmacologia , Prurido/complicações , Amidas , Animais , Contagem de Células , Dermatite Alérgica de Contato/imunologia , Dermatite Alérgica de Contato/metabolismo , Dinitrofluorbenzeno/efeitos adversos , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Etanolaminas/uso terapêutico , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/complicações , Mastócitos/citologia , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Palmíticos/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Genes Cells ; 21(6): 648-60, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27168020

RESUMO

Y-box binding protein 1 (YBX-1 or YB-1) is an oncoprotein that promotes replicative immortality, tumor cell invasion and metastasis. The increase in the abundance of YB-1 in the cell or YB-1 translocation from the cytoplasm to the nucleus is characteristic of malignant cell growth. We have previously reported that ΔNp63α, a transcription factor that is known to play a pivotal role in keratinocyte proliferation and differentiation, promotes YB-1 nuclear accumulation. Here, we show that YB-1 is highly expressed in proliferating keratinocytes and is down-regulated during keratinocyte differentiation. ΔNp63α reduces YB-1 protein turnover and leads to accumulation of ubiquitin-conjugated YB-1 into the nucleus. Reduction of YB-1 protein level, following treatment with a DNA-damaging agent, is inhibited by ΔNp63α suggesting that YB-1 and ΔNp63α interplay can support keratinocyte proliferation and protect cells from apoptosis under genotoxic stress.


Assuntos
Queratinócitos/citologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação a Y-Box/química , Ciclo Celular , Diferenciação Celular , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Queratinócitos/metabolismo , Estabilidade Proteica , Proteína 1 de Ligação a Y-Box/metabolismo
16.
Opt Express ; 16(2): 613-27, 2008 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-18542137

RESUMO

We propose and demonstrate a new type of electro-optic polymeric microring resonators, where the shape of the transmission spectrum is controlled by losses and phase shifts induced at the asymmetric directional coupler between the cavity and the bus waveguide. The theoretical analysis of such Charon microresonators shows, depending on the coupler design, three different transmission characteristics: normal Lorentzian dips, asymmetric Fano resonances, and Lorentzian peaks. The combination of the active azo-stilbene based polyimide SANDM2 surrounded by the hybrid polymer Ormocomp allowed the first experimental demonstration of electro-optic modulation in Charon microresonators. The low-loss modulators (down to 0.6 dB per round trip), with a radius of 50 microm, were produced by micro-embossing and exhibit either highly asymmetric and steep Fano resonances with large 43-GHz modulation bandwidth or strong resonances with 11-dB extinction ratio. We show that Charon microresonators can lead to 1-V half wave voltage all-polymer micrometer-scale devices with larger tolerances to coupler fabrication limitations and wider modulation bandwidths than classical ring resonators.


Assuntos
Eletrônica/instrumentação , Micro-Ondas , Óptica e Fotônica/instrumentação , Polímeros/química , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento
17.
Opt Express ; 15(2): 629-38, 2007 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19532285

RESUMO

We report for the first time to our knowledge optical waveguiding in an organic crystalline waveguide produced by ion implantation. Using H+ ions a refractive index barrier suitable for waveguiding has been realized in the highly nonlinear optical organic crystal 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST). The refractive index changes in the waveguiding region as a function of the distance from the surface have been measured. Maximal refractive index changes of up to -0.2 and -0.1 at wavelengths of 633nm and 810nm have been realized, respectively. The waveguide refractive index profiles as a function of the ion fluence have been determined. Planar waveguiding has been demonstrated by polishing sharp edges and using conventional end-fire coupling. The measured losses are approximately 7 dB/cm at 1.57mum.

18.
Opt Express ; 14(6): 2344-58, 2006 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19503572

RESUMO

Planar waveguides in nonlinear optical crystals of Sn(2)P(2)S(6) have been produced by He+ ion implantation. The effective indices of the waveguide have been determined and refractive index profiles have been evaluated for the indices along all three principal axes of the optical indicatrix. The depth of the induced optical barrier is n1 = -0.07, n2 = -0.07 and n3 = -0.09 at lambda = 0.633 microm for a fluence Phi = 0.5x10(15)ions/cm(2). Propagation losses for hybrid-n(1) modes are alpha approximately 10dB/cm.

19.
Opt Lett ; 30(18): 2412-4, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16196336

RESUMO

A new method, called barrier coupling, for coupling light into ion-implanted waveguides is presented in analogy to prism coupling. Light is coupled by frustrated total reflection at the barrier region of decreased refractive index by proper variation of the incident angle. Effective indices of guided modes are determined by the minima of the non-incoupled reflected light. The method is used for the determination of the effective indices of an ion-implanted waveguide in KNbO3. It is simpler than most other techniques, more accurate, and nondestructive.

20.
Phys Rev Lett ; 88(20): 208302, 2002 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12005610

RESUMO

We show that electrostatic effects have a dramatic influence on thermal diffusion of charged micelles. In the dilute regime, the Soret coefficient strongly decreases with the solution ionic strength, and scales as the square of the Debye-Hückel length. Yet, collective effects yield a reversed scenario even at fairly low surfactant concentration. We find that single-particle behavior can be explained using an interfacial tension mechanism proposed by Ruckenstein, which also fairly accounts for collective effects and opens the way to a general picture of thermal diffusion in disperse systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...