Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomicrofluidics ; 17(1): 014105, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36714795

RESUMO

In this paper, the combination of two algorithms, a cell counting algorithm and a velocity algorithm based on a Digital Particle Image Velocimetry (DPIV) method, is presented to study the collective behavior of micro-particles in response to hydrodynamic stimuli. A wide experimental campaign was conducted using micro-particles of different natures and diameters (from 5 to 16 µ m ), such as living cells and silica beads. The biological fluids were injected at the inlet of a micro-channel with an external oscillating flow, and the process was monitored in an investigated area, simultaneously, through a CCD camera and a photo-detector. The proposed data analysis procedure is based on the DPIV-based algorithm to extrapolate the micro-particles velocities and a custom counting algorithm to obtain the instantaneous micro-particles number. The counting algorithm was easily integrated with the DPIV-based algorithm, to automatically run the analysis to different videos and to post-process the results in time and frequency domain. The performed experiments highlight the difference in the micro-particles hydrodynamic responses to external stimuli and the possibility to associate them with the micro-particles physical properties. Furthermore, in order to overcome the hardware and software requirements for the development of a real-time approach, it was also investigated the possibility to detect the flows by photo-detector signals as an alternative to camera acquisition. The photo-detector signals were compared with the velocity trends as a proof of concept for further simplification and speed-up of the data acquisition and analysis. The algorithm flexibility underlines the potential of the proposed methodology to be suitable for real-time detection in embedded systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...