Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 11(3): 937-948, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768172

RESUMO

Social organisms combat pathogens through individual innate immune responses or through social immunity-behaviors among individuals that limit pathogen transmission within groups. Although we have a relatively detailed understanding of the genetics and evolution of the innate immune system of animals, we know little about social immunity. Addressing this knowledge gap is crucial for understanding how life-history traits influence immunity, and identifying if trade-offs exist between innate and social immunity. Hygienic behavior in the Western honey bee, Apis mellifera, provides an excellent model for investigating the genetics and evolution of social immunity in animals. This heritable, colony-level behavior is performed by nurse bees when they detect and remove infected or dead brood from the colony. We sequenced 125 haploid genomes from two artificially selected highly hygienic populations and a baseline unselected population. Genomic contrasts allowed us to identify a minimum of 73 genes tentatively associated with hygienic behavior. Many genes were within previously discovered QTLs associated with hygienic behavior and were predictive of hygienic behavior within the unselected population. These genes were often involved in neuronal development and sensory perception in solitary insects. We found that genes associated with hygienic behavior have evidence of positive selection within honey bees (Apis), supporting the hypothesis that social immunity contributes to fitness. Our results indicate that genes influencing developmental neurobiology and behavior in solitary insects may have been co-opted to give rise to a novel and adaptive social immune phenotype in honey bees.


Assuntos
Abelhas/genética , Evolução Biológica , Genoma de Inseto , Comportamentos Relacionados com a Saúde , Seleção Genética , Animais , Abelhas/imunologia , Locos de Características Quantitativas
2.
BMC Genomics ; 16: 63, 2015 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-25757461

RESUMO

BACKGROUND: The Western honey bee (Apis mellifera L.) is a critical component of human agriculture through its pollination activities. For years, beekeepers have controlled deadly pathogens such as Paenibacillus larvae, Nosema spp. and Varroa destructor with antibiotics and pesticides but widespread chemical resistance is appearing and most beekeepers would prefer to eliminate or reduce the use of in-hive chemicals. While such treatments are likely to still be needed, an alternate management strategy is to identify and select bees with heritable traits that allow them to resist mites and diseases. Breeding such bees is difficult as the tests involved to identify disease-resistance are complicated, time-consuming, expensive and can misidentify desirable genotypes. Additionally, we do not yet fully understand the mechanisms behind social immunity. Here we have set out to discover the molecular mechanism behind hygienic behavior (HB), a trait known to confer disease resistance in bees. RESULTS: After confirming that HB could be selectively bred for, we correlated measurements of this behavior with protein expression over a period of three years, at two geographically distinct sites, using several hundred bee colonies. By correlating the expression patterns of individual proteins with HB scores, we identified seven putative biomarkers of HB that survived stringent control for multiple hypothesis testing. Intriguingly, these proteins were all involved in semiochemical sensing (odorant binding proteins), nerve signal transmission or signal decay, indicative of the series of events required to respond to an olfactory signal from dead or diseased larvae. We then used recombinant versions of two odorant-binding proteins to identify the classes of ligands that these proteins might be helping bees detect. CONCLUSIONS: Our data suggest that neurosensory detection of odors emitted by dead or diseased larvae is the likely mechanism behind a complex and important social immunity behavior that allows bees to co-exist with pathogens.


Assuntos
Abelhas/genética , Comportamento Animal/fisiologia , Resistência à Doença/genética , Sistemas Neurossecretores , Agricultura , Animais , Abelhas/parasitologia , Genótipo , Humanos , Larva , Nosema/patogenicidade , Odorantes , Polinização/genética , Transdução de Sinais/genética , Varroidae/genética , Varroidae/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...