RESUMO
Many anthelmintics target the neuromuscular system, in particular by interfering with signaling mediated by classical neurotransmitters. Although peptidergic signaling has been proposed as a novel target for anthelmintics, current knowledge of the neuropeptide complement of many helminth groups is still limited, especially for parasitic flatworms (cestodes, trematodes, and monogeneans). In this work, we have characterized the neuropeptide complement of the model cestode Hymenolepis microstoma. Peptidomic characterization of adults of H. microstoma validated many of the neuropeptide precursor (npp) genes previously predicted in silico, and identified novel neuropeptides that are conserved in parasitic flatworms. Most neuropeptides from parasitic flatworms lack significant similarity to those from other animals, confirming the uniqueness of their peptidergic signaling. Analysis of gene expression of ten npp genes by in situ hybridization confirmed that all of them are expressed in the nervous system and identified cryptic features, including the first evidence of dorsoventral asymmetry, as well as a new population of peripheral peptidergic cells that appears to be conserved in the trematode Schistosoma mansoni. Finally, we characterized in greater detail Attachin, an SIFamide homolog. Although its expression is largely restricted to the longitudinal nerve cords and cerebral commissure in H. microstoma, it shows widespread localization in the larval nervous system of Echinococcus multilocularis and Mesocestoides corti. Exogenous addition of a peptide corresponding to the highly conserved C-terminus of Attachin stimulated motility and attachment of M. corti larvae. Altogether, this work provides a robust experimental foothold for the characterization of peptidergic signaling in parasitic flatworms. Cover Image for this issue: https://doi.org/10.1111/jnc.15418.
Assuntos
Cestoides , Echinococcus multilocularis , Neuropeptídeos , Parasitos , Animais , Echinococcus multilocularis/genética , Transdução de Sinais/fisiologiaRESUMO
Echinococcus granulosus, the etiological agent of human cystic echinococcosis (formerly known as hydatid disease), represents a serious worldwide public health problem with limited treatment options. The essential role played by the neuromuscular system in parasite survival and the relevance of serotonin (5-HT) in parasite movement and development make the serotonergic system an attractive source of drug targets. In this study, we cloned and sequenced a cDNA coding for the serotonin transporter from E. granulosus (EgSERT). Bioinformatic analyses suggest that EgSERT has twelve transmembrane domains with highly conserved ligand and ionic binding sites but a less conserved allosteric site compared with the human orthologue (HsSERT). Modeling studies also suggest a good degree of conservation of the overall structure compared with HsSERT. Functional and pharmacological studies performed on the cloned EgSERT confirm that this protein is indeed a serotonin transporter. EgSERT is specific for 5-HT and does not transport other neurotransmitters. Typical monoamine transport inhibitors also displayed inhibitory activities towards EgSERT, but with lower affinity than for the human SERT (HsSERT), suggesting a high divergence of the cestode transporter compared with HsSERT. In situ hybridization studies performed in the larval protoscolex stage suggest that EgSERT is located in discrete regions that are compatible with the major ganglia of the serotonergic nervous system. The pharmacological properties, the amino acidic substitutions at important functional regions compared with the HsSERT, and the putative role of EgSERT in the nervous system suggest that it could be an important target for pharmacological intervention.
Assuntos
Cestoides , Equinococose , Echinococcus granulosus , Animais , Equinococose/parasitologia , Echinococcus granulosus/fisiologia , Humanos , Sistema Nervoso/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismoRESUMO
The oncosphere larvae of tapeworms cyclically extend and retract their hooks during the penetration of the intestine of their intermediate hosts. The mechanisms regulating these movements are essentially unknown, in part due to the biohazardous nature of oncospheres from human pathogens. In this work, we standardized a method for the analysis of motility of hatched oncospheres (hexacanths) of the model tapeworm Hymenolepis microstoma. We used this assay to explore the relevance of protein kinases C (PKC) and A (PKA) in these processes. Pharmacological inhibition of the PKC pathway resulted in impaired larval motility. On the other hand, the PKA inhibitor H-89 potently blocked larval motility, as well as the motility of other life stages, although other inhibitors of the PKA pathway were not effective. This work represents the first study of the mechanisms that regulate the motility of oncospheres, and provides a path for further exploration.