Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 11(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36668785

RESUMO

Throughout the cold and the warm periods of 2020, chemical and toxicological characterization of the water-soluble fraction of size segregated particulate matter (PM) (<0.49, 0.49−0.95, 0.95−1.5, 1.5−3.0, 3.0−7.2 and >7.2 µm) was conducted in the urban agglomeration of Thessaloniki, northern Greece. Chemical analysis of the water-soluble PM fraction included water-soluble organic carbon (WSOC), humic-like substances (HULIS), and trace elements (V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd and Pb). The bulk (sum of all size fractions) concentrations of HULIS were 2.5 ± 0.5 and 1.2 ± 0.3 µg m−3, for the cold and warm sampling periods, respectively with highest values in the <0.49 µm particle size fraction. The total HULIS-C/WSOC ratio ranged from 17 to 26% for all sampling periods, confirming that HULIS are a significant part of WSOC. The most abundant water-soluble metals were Fe, Zn, Cu, and Mn. The oxidative PM activity was measured abiotically using the dithiothreitol (DTT) assay. In vitro cytotoxic responses were investigated using mitochondrial dehydrogenase (MTT). A significant positive correlation was found between OPmDTT, WSOC, HULIS and the MTT cytotoxicity of PM. Multiple Linear Regression (MLR) showed a good relationship between OPMDTT, HULIS and Cu.

2.
J Hazard Mater ; 448: 130872, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716558

RESUMO

Atmospheric particulate matter (PM) is one of the major risks for global health. The exact mechanisms of toxicity are still not completely understood leading to contrasting results when different toxicity metrics are compared. In this work, PM10 was collected at three sites for the determination of acellular oxidative potential (OP), intracellular oxidative stress (OSGC), cytotoxicity (MTT assay), and genotoxicity (Comet assay). The in vitro tests were done on the A549 cell line. The objective was to investigate the correlations among acellular and intracellular toxicity indicators, the variability among the sites, and how these correlations were influenced by the main sources by using PMF receptor model coupled with MLR. The OPDTTV, OSGCV, and cytotoxicity were strongly influenced by combustion sources. Advection of African dust led to lower-than-average intrinsic toxicity indicators. OPDTTV and OSGCV showed site-dependent correlations suggesting that acellular OP may not be fully representative of the intracellular oxidative stress at all sites and conditions. Cytotoxicity correlated with both OPDTTV and OSGCV at two sites out of three and the strength of the correlation was larger with OSGCV. Genotoxicity was correlated with cytotoxicity at all sites and correlated with both, OPDTTV and OSGCV, at two sites out of three. Results suggest that several toxicity indicators are useful to gain a global picture of the potential health effects of PM.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poeira , Estresse Oxidativo
3.
Atmos Environ (1994) ; 295: 119559, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36569029

RESUMO

Many countries imposed lockdown (LD) to limit the spread of COVID-19, which led to a reduction in the emission of anthropogenic atmospheric pollutants. Several studies have investigated the effects of LD on air quality, mostly in urban settings and criteria pollutants. However, less information is available on background sites, and virtually no information is available on particle number size distribution (PNSD). This study investigated the effect of LD on air quality at an urban background site representing a near coast area in the central Mediterranean. The analysis focused on equivalent black carbon (eBC), particle mass concentrations in different size fractions: PM2.5 (aerodynamic diameter Da < 2.5 µm), PM10 (Da < 10 µm), PM10-2.5 (2.5 < Da < 10 µm); and PNSD in a wide range of diameters (0.01-10 µm). Measurements in 2020 during the national LD in Italy and period immediately after LD (POST-LD period) were compared with those in the corresponding periods from 2015 to 2019. The results showed that LD reduced the frequency and intensity of high-pollution events. Reductions were more relevant during POST-LD than during LD period for all variables, except quasi-ultrafine particles and PM10-2.5. Two events of long-range transport of dust were observed, which need to be identified and removed to determine the effect of LD. The decreases in the quasi-ultrafine particles and eBC concentrations were 20%, and 15-22%, respectively. PM2.5 concentration was reduced by 13-44% whereas PM10-2.5 concentration was unaffected. The concentration of accumulation mode particles followed the behaviour of PM2.5, with reductions of 19-57%. The results obtained could be relevant for future strategies aimed at improving air quality and understanding the processes that influence the number and mass particle size distributions.

4.
J Environ Manage ; 319: 115752, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35982560

RESUMO

Airborne particulate matter (PM) is studied because of its effects on human health and climate change. PM long-term characterisation allows identifying trends and evaluating the outcomes of environmental protection policies. This work is aimed to study the inter-annual variability of PM2.5 and PM10 concentrations and chemical composition in an urban background site (Italy). A dataset of daily PM2.5 and PM10 was collected in the period 2016-2017, including the content of OC, EC, major water-soluble ions, main metals, and compared to a similar dataset collected in the period 2013-2014. Oxidative potential using DTT assay (dithiothreitol) was evaluated and expressed in DTTV as 0.39 nmol/min·m3 in PM10 and 0.29 in PM2.5 nmol/min·m3. PM source apportionment was computed using the EPA PMF5.0 model and source contributions compared with those of a previous dataset collected between 2013 and 2014. Multi linear regression analysis identified which source contributed (p < 0.05) to the oxidative potential of each size fraction. Inter-annual trends were more evident on PM2.5 with reductions of biomass burning contribution and increases in traffic contribution in the 2016-2017 period. Crustal contributions were similar for the two periods, in both size fractions. Carbonates were comparable in PM10 with a slight increase in PM2.5. Sea spray decreased in PM10. The DTTV of PM2.5 peaked during cold periods, while, the DTTV of the PM10-2.5 fraction peaked in summer, suggesting that different sources, with different seasonality, influence OP in the PM2.5 and PM10-2.5 fractions. Analysis showed that sea spray, crustal, and carbonates sources contribute ∼13.6% to DTTV in PM2.5 and ∼62.4% to DTTV in PM10-2.5. Combustion sources (biomass burning and traffic) contribute to the majority of DTTV (50.6%) in PM2.5 and contribute for ∼26% to DTTV in PM10-2.5. Secondary nitrate contributes to DTTV in both fine and coarse fraction; secondary sulphate contribute to DTTV in PM2.5 with negligible contributions to DTTV in PM10-2.5.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Humanos , Estresse Oxidativo , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
5.
Anal Chim Acta ; 1206: 339556, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35473859

RESUMO

A gold nanostructured electrochemical sensor based on modified GC electrode for thiols' detection is described and characterized. This sensor is a suitable device for the measurement of the oxidative potential (OP) of the atmospheric particulate matter (PM), considered a global indicator of adverse health effects of PM, as an alternative to the classic spectrophotometric methods. The operating principle is the determination of the OP, through the measurement of the consumption of DTT content. The DTT-based chemical reactivity is indeed a quantitative acellular probe for assessment of the capacity of the atmospheric PM to catalyze reactive oxygen species generation which contributes to the induction of oxidative stress in living organisms and in turn to the outcome of adverse health effects. To make the sensors, glassy carbon electrodes, traditional (GC) and screen printed (SPE) electrodes, have been electrochemically modified with well-shaped rounded gold nanoparticles (AuNPs) by using a deposition method that allows obtaining a stable and efficient modified surface in a very simple and reproducible modality. The chemical and morphological characterization of the nano-hybrid material has been performed by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy coupled with electron dispersive spectroscopy analysis (SEM/EDS). The electrochemical properties have been evaluated by cyclic voltammetry (CV) and chrono-amperometry (CA) in phosphate buffer at neutral pH as requested in DTT assay for OP measurements. The electroanalytical performances of the sensor in DTT detection are strongly encouraging showing low LODs (0.750 µM and 1.5 µM), high sensitivity (0.0622 µA cm-2 µM-1 and 0.0281 µA cm-2 µM-1), wide linear and dynamic ranges extending over 2-4 orders of magnitude and high selectivity. FIA preliminary results obtained on measuring the DTT rate consumption in six PM aqueous extracts samples showed a good correlation with measurements obtained in parallel on the same set of samples by using the classic spectrophotometric method based on the Ellman's reactive use. These results confirm the high selectivity of the method and its suitability for application to be applied in PM oxidative potential measurements.


Assuntos
Ouro , Nanopartículas Metálicas , Carbono/química , Ditiotreitol , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Nanopartículas Metálicas/química , Estresse Oxidativo , Fosfatos
6.
Polymers (Basel) ; 13(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445737

RESUMO

Cellulose nanomaterials have been widely investigated in the last decade, unveiling attractive properties for emerging applications. The ability of sulfated cellulose nanocrystals (CNCs) to guide the supramolecular organization of amphiphilic fullerene derivatives at the air/water interface has been recently highlighted. Here, we further investigated the assembly of Langmuir hybrid films that are based on the electrostatic interaction between cationic fulleropyrrolidines deposited at the air/water interface and anionic CNCs dispersed in the subphase, assessing the influence of additional negatively charged species that are dissolved in the water phase. By means of isotherm acquisition and spectroscopic measurements, we demonstrated that a tetra-sulfonated porphyrin, which was introduced in the subphase as anionic competitor, strongly inhibited the binding of CNCs to the floating fullerene layer. Nevertheless, despite the strong inhibition by anionic molecules, the mutual interaction between fulleropyrrolidines at the interface and the CNCs led to the assembly of robust hybrid films, which could be efficiently transferred onto solid substrates. Interestingly, ITO-electrodes that were modified with five-layer hybrid films exhibited enhanced electrical capacitance and produced anodic photocurrents at 0.4 V vs Ag/AgCl, whose intensity (230 nA/cm2) proved to be four times higher than the one that was observed with the sole fullerene derivative (60 nA/cm2).

7.
RSC Adv ; 11(43): 27074-27083, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35480024

RESUMO

Red spherula cells (RSC) from sea urchin coelomic fluid have attracted great interest for their specific and intriguing properties, such as for example antimicrobial activities and immune response, that probably tie in with their red characteristic pigments. Although to date different studies have been reported aimed to chemically characterize their pigments extracted from the cells, few data are available about the chemical characterization of the cell surface. In this work, a systematic chemical characterization of the RSC surface by X-ray photoelectron spectroscopy (XPS) analysis is described. The results were compared with data on colorless cells from the same coelomic fluid sample. Our observations evidenced that the two cell types were characterized by the presence of different chemical functional groups. In particular, the colorless cells are dominated by the presence of alkyl, alcohol, amide, and carboxyl groups in accordance with other similar cell types, enriched in Na+ and Cl- ions. Traces of elements like S (sulphonates) and P (phosphates) are also present. On the other hand, the RSC in addition to the alkyl groups show a reduction in the content of amide groups, accompanied by the anomalous presence of keto-enolic groups that probably can be associated with the presence of quinones/hydro-quinones from red pigments. A chemical enrichment in elements such as Cl- and Mg2+ and sulphate groups (-R-O-SO3 -), as well as the presence of sulphides and phosphates traces, is evident. The absence of carbonate groups is also observed in both cell populations, confirming the absence of sodium and magnesium carbonate salts. No traces of toxic elements (i.e., heavy metals) have been revealed.

8.
Biosensors (Basel) ; 8(4)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332738

RESUMO

The design of new materials as active layers is important for electrochemical sensor and biosensor development. Among the techniques for the modification and functionalization of electrodes, the laser induced forward transfer (LIFT) has emerged as a powerful physisorption method for the deposition of various materials (even labile materials like enzymes) that results in intimate and stable contact with target surface. In this work, Pt, Au, and glassy carbon screen printed electrodes (SPEs) treated by LIFT with phosphate buffer have been characterized by scanning electron microscopy and atomic force microscopy to reveal a flattening effect of all surfaces. The electrochemical characterization by cyclic voltammetry shows significant differences depending on the electrode material. The electroactivity of Au is reduced while that of glassy carbon and Pt is greatly enhanced. In particular, the electrochemical behavior of a phosphate LIFT treated Pt showed a marked enrichment of hydrogen adsorbed layer, suggesting an elevated electrocatalytic activity towards glucose oxidation. When Pt electrodes modified in this way were used as an effective glucose sensor, a 1⁻10 mM linear response and a 10 µM detection limit were obtained. A possible role of phosphate that was securely immobilized on a Pt surface, as evidenced by XPS analysis, enhancing the glucose electrooxidation is discussed.


Assuntos
Técnicas Biossensoriais/métodos , Eletrodos , Glucose/análise , Técnicas Eletroquímicas/métodos
9.
Nanotechnology ; 28(21): 215601, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28319033

RESUMO

The growth of MoO3 hierarchical plates was obtained by direct resistive heating of molybdenum foils at ambient pressure in the absence of any catalysts and templates. Plates synthesized after 60 min resistive heating typically grow in an single-crystalline orthorhombic structure that develop preferentially in the [001] direction, and are characterized by high resolution transmission electron microscopy, selected area diffraction pattern and Raman-scattering measurements. They are about 100-200 nm in thickness and a few tens of micrometers in length. As heating time proceeds to 80 min, plates of α-MoO3 form a branched structure. A more attentive look shows that primary plates formed at until 60 min could serve as substrates for the subsequent growth of secondary belts. Moreover, a full electrochemical characterization of α-MoO3 plates on platinum electrodes was done by cyclic voltammetric experiments, at pH 7 in phosphate buffer, to probe the activity of the proposed composite material as anode to methanol electro-oxidation. Reported results indicate that Pt MoO3 modified electrodes are appropriate to develop new an amperometric non-enzymatic sensor for methanol as well as to make anodes suitable to be used in direct methanol fuel cells working at neutral pH.

10.
Nanotechnology ; 28(6): 065502, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28050975

RESUMO

Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Espectroscopia Dielétrica/normas , Trombina/análise , Espectroscopia Dielétrica/métodos , Humanos , Limite de Detecção , Modelos Teóricos , Reprodutibilidade dos Testes
11.
Talanta ; 147: 124-31, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26592586

RESUMO

A new, very simple, rapid and inexpensive nonenzymatic amperometric sensor for hydrogen peroxide (H2O2) detection is proposed. It is based on the immobilization of cupric/cuprous oxide core shell nanowires (CuO@Cu2O-NWs) in a poly(vinyl alcohol) (PVA) matrix directly drop casted on a glassy carbon electrode surface to make a CuO@Cu2O core shell like NWs PVA embedded (CuO@Cu2O-NWs/PVA) sensor. CuO nanowires with mean diameters of 120-170nm and length in the range 2-5µm were grown by a simple catalyst-free thermal oxidation process based on resistive heating of pure copper wires at ambient conditions. The oxidation process of the copper wire surface led to the formation of a three layered structure: a thick Cu2O bottom layer, a CuO thin intermediate layer and CuO nanowires. CuO nanowires were carefully scratched from Cu2O layer with a sharp knife, dispersed into ethanol and sonicated. Then, the NWs were embedded in PVA matrix. The morphological and spectroscopic characterization of synthesized CuO-NWs and CuO@Cu2O-NWs/PVA were performed by transmission electron microscopy (TEM), selected area diffraction pattern (SAD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. Moreover a complete electrochemical characterization of these new CuO@Cu2O-NWs/PVA modified glassy carbon electrodes was performed by Cyclic Voltammetry (CV) and Cronoamperometry (CA) in phosphate buffer (pH=7; I=0.2) to investigate the sensing properties of this material against H2O2. The electrochemical performances of proposed sensors as high sensitivity, fast response, reproducibility and selectivity make them suitable for the quantitative determination of hydrogen peroxide substrate in batch analysis.


Assuntos
Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Cobre/química , Peróxido de Hidrogênio/análise , Nanofios/química , Álcool de Polivinil/química , Técnicas Biossensoriais/instrumentação , Peróxido de Hidrogênio/química , Microscopia Eletrônica de Transmissão , Reprodutibilidade dos Testes
12.
Biopolymers ; 101(5): 461-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23996728

RESUMO

The development and characterization of a novel bioactive polymer based on the immobilization of glucose oxidase enzyme (GOx) in a polyvinyl alcohol (PVA) film showing antibacterial activity is presented. The PVA-GOx composite material was extensively characterized by UV-vis, X-ray Photoelectron (XPS) spectroscopy and by Fourier Transform Infrared (FTIR) spectroscopy to verify the preservation of enzyme structural integrity and activity. The antimicrobial activity of this composite material against Escherichia coli and Vibrio alginolyticus was assessed. Furthermore the lysozyme-like activity of PVA-GOx was highlighted by a standard assay on Petri dishes employing Micrococcus lysodeikticus cell walls. The findings from this study have implications for future investigations related to the employment of PVA-GOx system as a composite material of pharmaceutical and technological interest.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Muramidase/metabolismo , Polímeros/farmacologia , Aspergillus/enzimologia , Escherichia coli/efeitos dos fármacos , Glucose Oxidase/metabolismo , Testes de Sensibilidade Microbiana , Micrococcus/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Álcool de Polivinil/farmacologia , Padrões de Referência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Vibrio/efeitos dos fármacos
13.
Talanta ; 115: 863-9, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24054675

RESUMO

A new nonenzymatic platinum Te oxide nanowires modified electrode (Pt/TeO2-NWs) for amperometric detection of hydrogen peroxide (H2O2) is proposed. The modified electrode has been developed by direct drop casting, with TeO2 nanowires (TeO2-NWs), synthesized by thermal evaporation of Te(0) in an oxygen atmosphere. The morphological and spectroscopic characterization of the TeO2-NWs as synthesized on Pt foil was performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. XPS and XRD analyses are especially involved to gain information on the chemical environment of TeO2-NWs in contact with Pt surface. Moreover electrochemical characterization of these new modified Pt/TeO2-NWs modified electrodes was performed by Cyclic Voltammetry (CV) and Cronoamperometry (CA) in phosphate buffer (pH=7; I=0.2) to investigate the sensing properties of this material against H2O2. The proposed sensor exhibits a wide linear and dynamic range from 2 µM to 16 mM (R(2)=0.9998) and the detection limit is estimated to be 0.6 µM (S/N=3). Moreover, this sensor shows a rapid amperometric response time of less than 5s and possessed good reproducibility. These results indicate that Pt/TeO2-NWs composite is suitable to be used as material for sensing applications.


Assuntos
Técnicas Eletroquímicas , Peróxido de Hidrogênio/análise , Nanofios/química , Platina/química , Telúrio/química , Soluções Tampão , Eletrodos , Concentração de Íons de Hidrogênio , Limite de Detecção , Microscopia Eletrônica de Varredura , Nanofios/ultraestrutura , Espectroscopia Fotoeletrônica , Reprodutibilidade dos Testes
14.
Analyst ; 136(1): 164-73, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20877902

RESUMO

A simple and novel amperometric biosensor for glucose detection is proposed. It is based on the immobilization of glucose oxidase (GOx) in a poly(vinyl alcohol) (PVA) matrix directly drop casted on a platinum electrode surface (Pt/GOx-PVA). Glucose was determined in the absence of a mediator used to transfer electrons between the electrode and the enzyme. The correlation between peak current (i(p)) and scan rate has been verified and the effect of pH solution has been checked. Glucose detection has been performed amperometrically at -400 mV by using pulsed amperometric detection (PAD). Under the selected optimal conditions, the biosensor showed low detection limit (10 µM), wide dynamic range (0.1-37 mM) and high sensitivity. The biosensor amperometric response revealed it to be specific to glucose without significant interference from other sugars and electroactive species coexisting with glucose in biological fluids. Response stability was another interesting feature of the developed system as it was almost completely recovered when the biosensor was left in opportune storage conditions (i.e., a response decrease of only 13% after 35 days in air at room temperature). Finally, X-Ray Photoelectron Spectroscopy (XPS) characterization revealed a homogeneous film deposited on the Pt substrate whose structure is also preserved under operative conditions.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Glucose Oxidase/metabolismo , Glucose/análise , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose Oxidase/química , Espectroscopia Fotoeletrônica , Platina/química , Cloreto de Polivinila/química , Espectrofotometria Ultravioleta
15.
J Phys Chem B ; 112(37): 11517-28, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18717554

RESUMO

Thin films of a newly synthesized iron(III) porphyrazine, LFeOESPz ( L = ClEtO, OESPz = ethylsulfanylporphyrazine), have been deposited by the Langmuir-Schafer (LS) technique (horizontal lifting) on ITO or gold substrates. Before deposition, the floating films have been investigated at the air-water interface by pressure/area per molecule (pi/ A) experiments, Brewster angle microscopy (BAM) and UV-vis reflection spectroscopy (RefSpec). The complex reacts with water subphase (pH 6.2) forming the mu-oxo dimer, which becomes the predominant component of the LS films ( LS-Fe) as indicated by optical, IR, XPS, and electrochemical data. LS-Fe multilayers exhibit, between open circuit potential (OCP) and +0.90 V (vs SCE), two independent peak pairs with formal potentials, E surf (I) and E surf(II) of +0.56 V and +0.78 V, respectively. According to dynamic voltammetric and coulometric experiments the peak pair at +0.56 V is attributed to one-electron process at the iron(III) centers on the monomer, while the peak pair at +0.78 V is associated to a four-electron process involving mu-oxo-dimer oligomers. LS-Fe films prove to be quite stable electrochemically between OCP and +0.90 V. The electrochemical stability decreases, however, when the potential range is extended both anodically and cathodically outside these limits, due to formation of new species. Upon incubation with TCA solutions, LS-Fe films show remarkable changes in the UV-vis spectra, which are consistent with a significant mu-oxo dimer --> monomer conversion. Addition of TCA to the electrochemical cell using a LS-Fe film as working electrode, results in a linear increase of a cathodic current peak near -0.40 V as the TCA concentration varies in the 0.1-2.0 mM range. This behavior is interpreted in terms of TCA inducing a progressive change in the composition of the LS-Fe films in favor of the monomeric iron(III) porphyrazine, which is responsible for the observed increase in the cathodic current near -0.40 V.


Assuntos
Ferro/química , Compostos Organometálicos/síntese química , Porfirinas/química , Cátions , Dimerização , Eletroquímica , Análise Espectral
16.
Anal Bioanal Chem ; 385(1): 146-52, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16583206

RESUMO

A three-step process for immobilization of glutamate dehydrogenase (GDH) on the surface of silicon dioxide has been studied by X-ray photoelectron spectroscopy (XPS). The enzyme layer was deposited on the silicon dioxide surface after first exposing the surface to 3-aminopropyltriethoxysilane (3-APTS) and reacting the silylated surface with glutaraldehyde (GA). Fine XPS analysis, performed after each step of the chemical procedure, revealed unknown details of the step-by-step construction of the enzyme layer under different experimental conditions.


Assuntos
Enzimas Imobilizadas/química , Glutamato Desidrogenase/química , Dióxido de Silício/química , Espectrometria por Raios X/métodos , Enzimas Imobilizadas/metabolismo , Glutamato Desidrogenase/metabolismo , Glutaral/química , Glutaral/metabolismo , Estrutura Molecular
17.
J Phys Chem B ; 109(25): 12347-52, 2005 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16852524

RESUMO

Characterization of polycrystalline TiO(2) bare or porphyrin impregnated powders, used as photocatalysts for the degradation of 4-nitrophenol (4-NP) in aqueous suspension, was performed by time-resolved microwave conductivity (TRMC) measurements and electronic paramagnetic resonance (EPR) and X-ray photoelectron (XPS) spectroscopies. The presence of porphyrin sensitizers, as the metal-free or Cu [5,10,15,20-tetra (4-tert-butylphenyl)] porphyrin, impregnated onto the TiO(2) surface improved the photocatalytic activity of the bare TiO(2). TRMC measurements indicate that the number and lifetime of the photoinduced excess charge carriers increase in the presence of the macrocycles, and EPR and XPS spectroscopies support the mechanistic hypotheses based on the photoreactivity experiments.


Assuntos
Condutividade Elétrica , Micro-Ondas , Nitrofenóis/química , Porfirinas/química , Titânio/química , Catálise , Cristalização , Estrutura Molecular , Fotoquímica , Análise Espectral , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...