Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32656577

RESUMO

Thoracic ganglia of many hearing insects house the first level of auditory processing. In bush-crickets, the largest population of local auditory neurons in the prothoracic processing centre are dorsal unpaired median (DUM) neurons. It has been suggested that DUM neurons are inhibitory using γ-aminobutyric acid (GABA) as transmitter. Immunohistochemistry reveals a population of about 35-50 GABA-positive somata in the posterior medial cluster of the prothoracic ganglion. Only very few small somata in this cluster remain unstained. At least 10 neurites from 10 neurons can be identified. Intracellularly stained auditory DUM neurons have their soma in the cluster of median GABA positive cells and most of them exhibit GABA-immunoreactivity. Responses of certain DUM neurons show obvious signs of inhibition. Application of picrotoxin (PTX), a chloride-channel blocker in insects, changes the responses of many DUM neurons. They become broader in frequency tuning and broader or narrower in temporal pattern tuning. Furthermore, inhibitory postsynaptic potentials (IPSPs) may be replaced by excitatory postsynaptic potentials. Loss of an IPSP in the rising graded potential after PTX-application leads to a significant reduction of first-spike latency. Therefore, auditory DUM neurons receive effective inhibition and are the best candidates for inhibition in DUM neurons and other auditory interneurons.


Assuntos
Gryllidae/fisiologia , Picrotoxina/farmacologia , Estimulação Acústica , Animais , Vias Auditivas/efeitos dos fármacos , Vias Auditivas/fisiologia , Percepção Auditiva/efeitos dos fármacos , Percepção Auditiva/fisiologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Antagonistas GABAérgicos/farmacologia , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/fisiologia , Gryllidae/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/metabolismo
2.
J Insect Sci ; 13: 157, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24785151

RESUMO

Guadeloupe, the largest of the Leeward Islands, harbors three species of Pseudophyllinae (Orthoptera: Tettigoniidae) belonging to distinct tribes. This study examined the basic aspects of sound production and acousto-vibratory behavior of these species. As the songs of many Pseudophyllinae are complex and peak at high frequencies, they require high quality recordings. Wild specimens were therefore recorded ex situ. Collected specimens were used in structure-function experiments. Karukerana aguilari Bonfils (Pterophyllini) is a large species with a mirror in each tegmen and conspicuous folds over the mirror. It sings 4-6 syllables, each comprising 10-20 pulses, with several peaks in the frequency spectrum between 4 and 20 kHz. The song is among the loudest in Orthoptera (> 125 dB SPL in 10 cm distance). The folds are protective and have no function in song production. Both mirrors may work independently in sound radiation. Nesonotus reticulatus (Fabricius) (Cocconotini) produces verses from two syllables at irregular intervals. The song peaks around 20 kHz. While singing, the males often produce a tremulation signal with the abdomen at about 8-10 Hz. To our knowledge, it is the first record of simultaneous calling song and tremulation in Orthoptera. Other males reply to the tremulation with their own tremulation. Xerophyllopteryx fumosa (Brunner von Wattenwyl) (Pleminiini) is a large, bark-like species, producing a syllable of around 20 pulses. The syllables are produced with irregular rhythms (often two with shorter intervals). The song peaks around 2-3 kHz and 10 kHz. The hind wings are relatively thick and are held between the half opened tegmina during singing. Removal of the hind wings reduces song intensity by about 5 dB, especially of the low frequency component, suggesting that the hind wings have a role in amplifying the song.


Assuntos
Comunicação Animal , Ortópteros/fisiologia , Asas de Animais/fisiologia , Animais , Feminino , Guadalupe , Masculino , Movimento , Espectrografia do Som , Especificidade da Espécie , Gravação em Fita , Gravação de Videoteipe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...