Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 333: 138951, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37196791

RESUMO

Unique interfacial properties of 2D materials make them more functional than their bulk counterparts in a catalytic application. In the present study, bulk and 2D graphitic carbon nitride nanosheet (bulk g-C3N4 and 2D-g-C3N4 NS) coated cotton fabrics and nickel foam electrode interfaces have been applied for solar light-driven self-cleaning of methyl orange (MO) dye and electrocatalytic oxygen evolution reaction (OER), respectively. Compared to bulk, 2D-g-C3N4 coated interfaces show higher surface roughness (1.094 > 0.803) and enhanced hydrophilicity (θ âˆ¼ 32° < 62° for cotton fabric and θ âˆ¼ 25° < 54° for Ni foam substrate) due to oxygen defect induction as confirmed from morphological (HR-TEM and AFM) and interfacial (XPS) characterizations. The self-remediation efficiencies for blank and bulk/2D-g-C3N4 coated cotton fabrics are estimated through colorimetric absorbance and average intensity changes. The self-cleaning efficiency for 2D-g-C3N4 NS coated cotton fabric is 87%, whereas the blank and bulk-coated fabric show 31% and 52% efficiency. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis determines the reaction intermediates for MO cleaning. 2D-g-C3N4 shows lower overpotential (108 mV) and onset potential (1.30 V) vs. RHE for 10 mA cm-2 OER current density in 0.1 M KOH. Also, the decreased charge transfer resistance (RCT = 12 Ω) and lower Tafel's slope (24 mV dec-1) of 2D-g-C3N4 make it the most efficient OER catalyst over bulk-g-C3N4 and state-of-the-art material RuO2. The pseudocapacitance behavior of OER governs the kinetics of electrode-electrolyte interaction through the electrical double layer (EDL) mechanism. The 2D electrocatalyst demonstrates long-term stability (retention ∼94%) and efficacy compared to commercial electrocatalysts.


Assuntos
Compostos Azo , Oxigênio , Molhabilidade , Catálise
2.
ACS Omega ; 8(5): 4802-4812, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777600

RESUMO

Metal-free porous activated carbon is an effective alternative to capture CO2 due to its high surface area and textural advantages. In this regard, the present research work explores a suitable method for producing activated porous carbon with a high specific surface area through a two-step reaction involving rice husk and KOH at 600 °C for 1 h to capture CO2. By varying the ratio of rice husk biomass to KOH, the texture and specific surface area of the activated porous carbon has been altered. A high surface area of ∼755 m2/g and a micropore volume of 0.243 cm3/g have been observed in the porous carbon produced with a KOH/biomass weight ratio of 3 (PAC2). Nitrogen contents in PAC1 and PAC2 were approximately 2.27 and 2.71 atom %, respectively. When compared with other materials, PAC2 has the highest CO2 adsorption capability, reaching up to 3.13 mmol/g at 0 °C and 1.55 mmol/g at 50 °C. The isosteric heat of adsorption confirms the presence of both physisorption and chemisorption. The materials turn out to be highly CO2/N2 selective, with the highest selectivity of 131, proving that the samples are potential materials for capturing CO2 from flue gases. These findings unequivocally show that porous activated carbon can be used to make CO2 adsorption efficient, inexpensive, and, more importantly, extremely effective.

3.
ACS Appl Mater Interfaces ; 13(8): 9942-9954, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33606504

RESUMO

Surface decoration of metal oxides by metals for enhancing their electrocatalytic properties for organic conversions has attracted a lot of researchers' interest due to their high abundancy, inexpensiveness, and high stability. In the present work, a process for the synthesis of black gold (BG) using a citrate assisted chemical route and m-ZrO2 by a hydrothermal method at 200 °C has been developed. Further, different concentrations of black gold are being used to decorate the surface of zirconia by exploitation of surface potential of zirconia and gold surfaces. The catalyst having 6 mol % concentration of black gold shows excellent electrocatalytic activity for ethanol oxidation with low oxidation peak potential (1.17 V) and high peak current density (8.54 mA cm-2). The current density ratio (jf/jb) is also high (2.54) for this catalyst indicating its high tolerance toward poisoning by intermediate species generated during the catalytic cycle. The enhanced electrocatalytic activity can be attributed to the high tolerance of gold toward CO poisoning and high stability of the ZrO2 support. The black gold decorated zirconia catalyst showed enhanced activity during photoelectrochemical studies when the entire spectrum of light falls on the catalyst. Ultrafast transient studies demonstrated plasmonic excitation of metallic free electrons and subsequent charge separation in the black gold-ZrO2 heterointerface as the key factor for enhanced photoelectrocatalytic activity.

4.
J Hazard Mater ; 384: 121112, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31564457

RESUMO

In an attempt to develop low cost, energy efficient and advanced electrode material for lithium-ion batteries (LIBs), waste-to-wealth derived as well as value added spent battery materials as potential alternatives assume paramount importance. By combining the low lithiation potential advantages, one can arrive at energy efficient electrodes bestowed with cost effective and eco-friendly benefits required for practical LIB applications. In the present study, Zn and Mn-salts along with C were successfully extracted from the spent zinc carbon batteries through a simple and efficient hydrometallurgy approach and decomposed thermally to obtain ZnMn2O4 at 350 °C for 12 h and 450 °C for 3 h. Further, C-ZnMn2O4 nanocomposites were prepared and demonstrated for appreciable electrochemical performance in LIB assembly. Our results show that C-ZnMn2O4 composites prepared at 350 °C and 450 °C demonstrate better performance than pristine ZnMn2O4 anode due to the improved electronic conductivity rendered by the added carbon obtained from spent primary battery. In particular, C-ZnMn2O4 at 350 °C @12 h exhibits appreciable electrochemical performance by showing a stable and higher capacity of 600 mAhg-1 at a current density of 50 mAg-1 in the voltage range of 0.01-3.0 V and qualifies it as a better performing cost-effective anode for LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...