Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(9): e17331, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38533629

RESUMO

Marine sediments cover 70% of the Earth's surface, and harbour diverse bacterial communities critical for marine biogeochemical processes, which affect climate change, biodiversity and ecosystem functioning. Nematodes, the most abundant and species-rich metazoan organisms in marine sediments, in turn, affect benthic bacterial communities and bacterial-mediated ecological processes, but the underlying mechanisms by which they affect biogeochemical cycles remain poorly understood. Here, we demonstrate using a metatranscriptomic approach that nematodes alter the taxonomic and functional profiles of benthic bacterial communities. We found particularly strong stimulation of nitrogen-fixing and methane-oxidizing bacteria in the presence of nematodes, as well as increased functional activity associated with methane metabolism and degradation of various carbon compounds. This study provides empirical evidence that the presence of nematodes results in taxonomic and functional shifts in active bacterial communities, indicating that nematodes may play an important role in benthic ecosystem processes.


Assuntos
Bactérias , Ecossistema , Sedimentos Geológicos , Nematoides , Animais , Nematoides/microbiologia , Nematoides/genética , Bactérias/genética , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Biodiversidade , Transcriptoma , Microbiota/genética , Metano/metabolismo
2.
PLoS One ; 13(9): e0204750, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30261070

RESUMO

Coexistence of highly similar species is at odds with ecological theory of competition; coexistence, then, requires stabilizing mechanisms such as differences in ecological niche. In the bacterivore nematode Litoditis marina species complex, which occurs associated with macro-algae, four cryptic lineages (Pm I-IV) co-occur in the field along the south-western coast and estuaries of The Netherlands. Here we investigate the temporal and/or spatial niche differentiation in their natural environment using a qPCR-based detection and relative quantification method. We collected different algal species (i.e. two Fucus species and Ulva sp.) and separated algal structures (i.e. receptacula, thalli, non-fertile tips and bladders) at different sampling months and times (i.e. twice per sampling month), to examine differences in microhabitat use between coexisting L. marina species. Results demonstrate that the cryptic species composition varied among different algal species and algal structures, which was also subject to temporal shifts. Pm I dominated on Fucus spp., Pm II showed dominance on Ulva sp., while Pm III overall had the lowest frequencies. Microhabitat partitioning was most pronounced between the two cryptic species which had similar microbiomes (Pm I and Pm II), and less so between the two species which had significantly different microbiomes (Pm I and Pm III), suggesting that species which share the same microhabitats may avoid competition through resource partitioning. The interplay of microhabitat differentiation and temporal dynamics among the cryptic species of L. marina implies that there is a complex interaction between biotic components and abiotic factors which contributes to their coexistence in the field.


Assuntos
Biodiversidade , Fucus/fisiologia , Rhabditoidea/fisiologia , Ulva/fisiologia , Áreas Alagadas , Animais , Fucus/classificação , Países Baixos , Rhabditoidea/classificação , Ulva/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...