Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 127(20): 9896-9902, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37255927

RESUMO

Electrochemical charging of nanocrystal films opens up new possibilities for designing quantum dot-based device structures, but a solid theoretical framework of this process and its limitations is lacking. In this work, drift-diffusion simulations are employed to model the charging of nanocrystal films and gain insight into the electrochemical doping process. Through steady state simulations it is shown that the Fermi level and doping density in the nanocrystal film depend on the concentration of the electrolyte in addition to the value of the applied potential. Time-resolved simulations reveal that charging is often limited by transport of electrolyte ions. However, ion transport in the film is dominated by drift, rather than diffusion, and the concentration profile of ions differs substantially from concentration profiles of diffusing redox species at flat electrodes. Classical electrochemical theory cannot be used to model this type of mass transport limited behavior in films of nanocrystals, so a new model is developed. We show that the Randles-Sevcík equation, which is derived for electrochemical species diffusing in solution, but is often applied to films as well, results in a significant underestimation of the diffusion coefficients of the charge compensating electrolyte ions.

2.
Chem Mater ; 34(9): 4019-4028, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35573106

RESUMO

Quantum dots (QDs) are considered for devices like light-emitting diodes (LEDs) and photodetectors as a result of their tunable optoelectronic properties. To utilize the full potential of QDs for optoelectronic applications, control over the charge carrier density is vital. However, controlled electronic doping of these materials has remained a long-standing challenge, thus slowing their integration into optoelectronic devices. Electrochemical doping offers a way to precisely and controllably tune the charge carrier concentration as a function of applied potential and thus the doping levels in QDs. However, the injected charges are typically not stable after disconnecting the external voltage source because of electrochemical side reactions with impurities or with the surfaces of the QDs. Here, we use photopolymerization to covalently bind polymerizable electrolyte ions to polymerizable solvent molecules after electrochemical charge injection. We discuss the importance of using polymerizable dopant ions as compared to nonpolymerizable conventional electrolyte ions such as LiClO4 when used in electrochemical doping. The results show that the stability of charge carriers in QD films can be enhanced by many orders of magnitude, from minutes to several weeks, after photochemical ion fixation. We anticipate that this novel way of stable doping of QDs will pave the way for new opportunities and potential uses in future QD electronic devices.

3.
ACS Nano ; 15(1): 377-386, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33171052

RESUMO

Solution-processed quantum dot (QD) lasers are one of the holy grails of nanoscience. They are not yet commercialized because the lasing threshold is too high: one needs >1 exciton per QD, which is difficult to achieve because of fast nonradiative Auger recombination. The threshold can, however, be reduced by electronic doping of the QDs, which decreases the absorption near the band-edge, such that the stimulated emission (SE) can easily outcompete absorption. Here, we show that by electrochemically doping films of CdSe/CdS/ZnS QDs, we achieve quantitative control over the gain threshold. We obtain stable and reversible doping of more than two electrons per QD. We quantify the gain threshold and the charge carrier dynamics using ultrafast spectroelectrochemistry and achieve quantitative agreement between experiments and theory, including a vanishingly low gain threshold for doubly doped QDs. Over a range of wavelengths with appreciable gain coefficients, the gain thresholds reach record-low values of ∼1 × 10-5 excitons per QD. These results demonstrate a high level of control over the gain threshold in doped QD solids, opening a new route for the creation of cheap, solution-processable, low-threshold QD lasers.

4.
J Phys Chem C Nanomater Interfaces ; 123(49): 29599-29608, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31867087

RESUMO

Colloidal quantum dots (QDs) allow great flexibility in the design of optoelectronic devices, thanks to their size-dependent optical and electronic properties and the possibility to fabricate thin films with solution-based processing. In particular, in QD-based heterojunctions, the band gap of both components can be controlled by varying the size of the QDs. However, control over the band alignment between the two materials is required to tune the dynamics of carrier transfer across a heterostructure. We demonstrate that ligand exchange strategies can be used to control the band alignment of PbSe and CdSe QDs in a mixed QD solid, shifting it from a type-I to a type-II alignment. The change in alignment is observed in both spectroelectrochemical and transient absorption measurements, leading to a change in the energy of the conduction band edges in the two materials and in the direction of electron transfer upon photoexcitation. Our work demonstrates the possibility to tune the band offset of QD heterostructures via control of the chemical species passivating the QD surface, allowing full control over the energetics of the heterostructure without requiring changes in the QD composition.

5.
Chem Mater ; 31(20): 8484-8493, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31666761

RESUMO

In this work, we systematically study the spectroelectrochemical response of CdSe quantum dots (QDs), CdSe/CdS core/shell QDs with varying CdS shell thicknesses, and CdSe/CdS/ZnS core/shell/shell QDs in order to elucidate the influence of localized surface trap states on the optoelectronic properties. By correlating the differential absorbance and the photoluminescence upon electrochemically raising the Fermi level, we reveal that trap states near the conduction band (CB) edge give rise to nonradiative recombination pathways regardless of the CdS shell thickness, evidenced by quenching of the photoluminescence before the CB edge is populated with electrons. This points in the direction of shallow trap states localized on the CdS shell surface that give rise to nonradiative recombination pathways. We suggest that these shallow trap states reduce the quantum yield because of enhanced hole trapping when the Fermi level is raised electrochemically. We show that these shallow trap states are removed when additional wide band gap ZnS shells are grown around the CdSe/CdS core/shell QDs.

6.
J Chem Phys ; 151(14): 144708, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615263

RESUMO

Electronic doping of semiconductor nanomaterials can be efficiently achieved using electrochemistry. However, the injected charge carriers are usually not very stable. After disconnecting the cell that is used for electrochemical doping, the carrier density drops, typically in several minutes. While there are multiple possible causes for this, we demonstrate here using n-doped ZnO quantum-dot (QD) films of variable thickness that the dominant mechanism is reduction of solvent impurities by the injected electrons. We subsequently investigate two different ways to enhance the doping stability of ZnO QD films. The first method uses preemptive reduction of the solvent impurities; the second method involves a solid covering the QD film, which hinders impurity diffusion to the film. Both methods enhance the doping stability of the QD films greatly.

7.
ACS Appl Nano Mater ; 2(8): 4900-4909, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31475245

RESUMO

Semiconductor films that allow facile ion transport can be electronically doped via electrochemistry, where the amount of injected charge can be controlled by the potential applied. To apply electrochemical doping to the design of semiconductor devices, the injected charge has to be stabilized to avoid unintentional relaxation back to the intrinsic state. Here, we investigate methods to increase the stability of electrochemically injected charges in thin films of a wide variety of semiconductor materials, namely inorganic semiconductors (ZnO NCs, CdSe NCs, and CdSe/CdS core/shell NCs) and organic semiconductors (P3DT, PCBM, and C60). We show that by charging the semiconductors at elevated temperatures in solvents with melting points above room temperature, the charge stability at room temperature increases greatly, from seconds to days. At reduced temperature (-75 °C when using succinonitrile as electrolyte solvent) the injected charge becomes entirely stable on the time scale of our experiments (up to several days). Other high melting point solvents such as dimethyl sulfone, ethylene carbonate, and poly(ethylene glycol) (PEG) also offer increased charge stability at room temperature. Especially the use of PEG increases the room temperature charge stability by several orders of magnitude compared to using acetonitrile. We discuss how this improvement of the charge stability is related to the immobilization of electrolyte ions and impurities. While the electrolyte ions are immobilized, conductivity measurements show that electrons in the semiconductor films remain mobile. These results highlight the potential of using solidified electrolytes to stabilize injected charges, which is a promising step toward making semiconductor devices based on electrochemically doped semiconductor thin films.

8.
ACS Nano ; 12(11): 11244-11253, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30372029

RESUMO

The processes that govern radiative recombination in ternary CuInS2 (CIS) nanocrystals (NCs) have been heavily debated, but recently, several research groups have come to the same conclusion that a photoexcited electron recombines with a localized hole on a Cu-related trap state. Furthermore, it has been observed that single CIS NCs display narrower photoluminescence (PL) line widths than the ensemble, which led to the conclusion that within the ensemble there is a distribution of Cu-related trap states responsible for PL. In this work, we probe this trap-state distribution with in situ photoluminescence spectroelectrochemistry. We find that Cu2+ states result in individual "dark" nanocrystals, whereas Cu+ states result in "bright" NCs. Furthermore, we show that we can tune the PL position, intensity, and line width in a cyclic fashion by injecting or removing electrons from the trap-state distribution, thereby converting a subset of "dark" Cu2+ containing NCs into "bright" Cu+ containing NCs and vice versa. The electrochemical injection of electrons results in brightening, broadening, and a red shift of the PL, in line with the activation of a broad distribution of "dark" NCs (Cu2+ states) into "bright" NCs (Cu+ states) and a rise of the Fermi level within the ensemble trap-state distribution. The opposite trend is observed for electrochemical oxidation of Cu+ states into Cu2+. Our work shows that there is a direct correlation between the line width of the ensemble Cu+/Cu2+ trap-state distribution and the characteristic broad-band PL feature of CIS NCs and between Cu2+ cations in the photoexcited state (bright) and in the electrochemically oxidized ground state (dark).

9.
J Am Chem Soc ; 140(21): 6582-6590, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29718666

RESUMO

Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li+ and Na+ the onset is at significantly less negative potentials. For larger ions (K+, quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li+ and Na+. Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies.

10.
J Am Chem Soc ; 139(37): 13208-13217, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28841295

RESUMO

Control over the doping density in copper sulfide nanocrystals is of great importance and determines its use in optoelectronic applications such as NIR optical switches and photovoltaic devices. Here, we demonstrate that we can reversibly control the hole carrier density (varying from >1022 cm-3 to intrinsic) in copper sulfide nanocrystals by electrochemical methods. We can control the type of charge injection, i.e., capacitive charging or ion intercalation, via the choice of the charge compensating cation (e.g., ammonium salts vs Li+). Further, the type of intercalating ion determines whether the charge injection is fully reversible (for Li+) or leads to permanent changes in doping density (for Cu+). Using fully reversible lithium intercalation allows us to switch between thin films of covellite CuS NCs (Eg = 2.0 eV, hole density 1022 cm-3, strong localized surface plasmon resonance) and low-chalcocite CuLiS NCs (Eg = 1.2 eV, intrinsic, no localized surface plasmon resonance), and back. Electrochemical Cu+ ion intercalation leads to a permanent phase transition to intrinsic low-chalcocite Cu2S nanocrystals that display air stable fluorescence, centered around 1050 nm (fwhm ∼145 meV, PLQY ca. 1.8%), which is the first observation of narrow near-infrared fluorescence for copper sulfide nanocrystals. The dynamic control over the hole doping density and fluorescence of copper sulfide nanocrystals presented in this work and the ability to switch between plasmonic and fluorescent semiconductor nanocrystals might lead to their successful implementation into photovoltaic devices, NIR optical switches and smart windows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA