Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Omega ; 9(13): 15175-15190, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585065

RESUMO

The purpose of this research was to learn more about the primary and secondary properties of Moroccan natural clay in an effort to better investigate innovative adsorbents and gain access to an ideal adsorption system. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis (SEM-EDX) and X-ray fluorescence were employed for identification. SEM revealed clay grains, including tiny particles and unevenly shaped sticks. First- and second-order rate laws, representing two distinct kinetic models, were applied in the kinetic approach. Adsorption of dye MB onto natural clay was studied, and the results agreed with the 2 s order model. The significant correlation coefficients support the inference that the adsorption process was governed by the Langmuir model. Subsequent DFT analyses demonstrated that the methylene blue dye's HOMO and LUMO surfaces are dispersed across most of the dye's components, pointing to a strong interaction with the clay. To determine how the dye might be adsorbed onto the clay, we employed quantum descriptors to locate its most nucleophilic and electrophilic centers. Endothermic reactions are evident during the MB adsorption process on clay, as indicated by the positive values of ΔH0 and ΔS0 (70.49 kJ mol-1of RC and 84.19 kJ mol-1 of OC and 10.45 J mol-1 K-1 of RC and 12.68 mol-1 K-1 of OC, respectively). Additionally dye molecules on the adsorbent exhibit a higher order of distribution than in the solution, indicating that the adsorption process is spontaneous.

2.
J Mol Model ; 30(5): 151, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668860

RESUMO

CONTEXT: The controlled slow evaporation process conducted at room temperature has produced a novel hybrid material denoted as (2-hydroxyethyl) trimethylammonium dihydrogen phosphate [2-HDETDHP] (C5H14NO+, H2PO4-), synthesized through the solution growth method. X-ray crystallography analysis reveals a triclinic structure with a filling rate of P and a Z value of 2. This hybrid material displays noteworthy absorption characteristics in the middle and far ultraviolet regions. UV-visible spectroscopy further establishes its transparency in the visible and near-visible ultraviolet domains. FT-IR spectroscopy examines various vibration modes, elucidating their relationships with the functional groups within the structure. Two- and three-dimensional fingerprint maps, coupled with three-dimensional crystal structures through Hirshfeld Surface Analysis, unveil the dominance of O•••H and H•••H interactions in the structure, comprising 49.40% and 50.40%, respectively. Fingerprint plots derived from the Hirshfeld surface assess the percentages of hydrogen bonding interactions, with 80.6% attributed to a fragment patch. The experiment of antimicrobial efficacy of a synthesized product, conducted in triplicate, demonstrated the synthesized product's potential antimicrobial activity. METHODS: Hirshfeld surfaces are employed to investigate intermolecular hydrogen bonding, specifically within single phosphate groups. The molecular structure of 2-HDETDHP was refined using single-crystal X-ray analysis, while its optical characteristics were examined through UV-visible spectroscopy. FT-IR spectroscopy is employed for the assignment of molecular vibrations of functional groups in the affined structure. Quantum calculations were executed with the GAUSSIAN 09 software package at B3LYP/6-311G level of theory, to optimize the molecular geometries. The antimicrobial efficacy of a synthesized product was evaluated using the disc diffusion method against antibiotic-resistant Candida albicans, Candida tropicalis, Aspergillus niger, Staphylococcus aureus, and Escherichia coli. Microorganisms were cultured on nutrient agar, and inhibition zones were measured after incubation, with streptomycin and amphotericin as positive controls.


Assuntos
Fosfatos , Fosfatos/química , Ligação de Hidrogênio , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana , Cristalografia por Raios X , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Candida albicans/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/síntese química
3.
Plants (Basel) ; 12(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36840059

RESUMO

Climate and soil are important factors that affect the quality of saffron. Saffron quality is determined by the marked content of secondary metabolites. The objective of this work was to study the effect of soil physicochemical properties on the secondary metabolites of saffron. Our study concerned the analysis of saffron samples by high-performance liquid chromatography-detection by diode array (HPLC-DAD). Soil samples were analyzed by physicochemical methods, ED-XRF fluorescence and X-ray diffraction to determine the different types of clays. Saffron samples grown in loam-clay-sand soils contained high values of crocins and kaempferol 3-sophoroside 7-glucoside but low values of safranal. In addition, saffron samples grown in soils rich in organic matter, phosphorus and potassium contained high values of crocins and kaempferol 3-sophoroside 7-glucoside but low values of safranal. This original approach was carried out for the first time in our study, both by ED-XRF fluorescence and by X-ray diffraction, to determine what elements affect the quality of saffron. Thus, we concluded that clays containing low amounts of iron could have a positive effect on the coloring strength of saffron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...