Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 10: 5965-79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26445538

RESUMO

Following infection, HIV establishes reservoirs within tissues that are inaccessible to optimal levels of antiviral drugs or within cells where HIV lies latent, thus escaping the action of anti-HIV drugs. Macrophages are a persistent reservoir for HIV and may contribute to the rebound viremia observed after antiretroviral treatment is stopped. In this study, we further investigate the potential of poly(lactic-co-glycolic) acid (PLGA)-based nanocarriers as a new strategy to enhance penetration of therapeutic molecules into macrophages. We have prepared stable PLGA nanoparticles (NPs) and evaluated their capacity to transport an active molecule into the human monocyte/macrophage cell line THP-1 using bovine serum albumin (BSA) as a proof-of-concept compound. Intracellular localization of fluorescent BSA molecules encapsulated into PLGA NPs was monitored in live cells using confocal microscopy, and cellular uptake was quantified by flow cytometry. In vitro and in vivo toxicological studies were performed to further determine the safety profile of PLGA NPs including inflammatory effects. The size of the PLGA NPs carrying BSA (PLGA-BSA) in culture medium containing 10% serum was ~126 nm in diameter, and they were negatively charged at their surface (zeta potential =-5.6 mV). Our confocal microscopy studies and flow cytometry data showed that these PLGA-BSA NPs are rapidly and efficiently taken up by THP-1 monocyte-derived macrophages (MDMs) at low doses. We found that PLGA-BSA NPs increased cellular uptake and internalization of the protein in vitro. PLGA NPs were not cytotoxic for THP-1 MDM cells, did not modulate neutrophil apoptosis in vitro, and did not show inflammatory effect in vivo in the murine air pouch model of acute inflammation. In contrast to BSA alone, BSA encapsulated into PLGA NPs increased leukocyte infiltration in vivo, suggesting the in vivo enhanced delivery and protection of the protein by the polymer nanocarrier. We demonstrated that PLGA-based nanopolymer carriers are good candidates to efficiently and safely enhance the transport of active molecules into human MDMs. In addition, we further investigated their inflammatory profile and showed that PLGA NPs have low inflammatory effects in vitro and in vivo. Thus, PLGA nanocarriers are promising as a drug delivery strategy in macrophages for prevention and eradication of intracellular pathogens such as HIV and Mycobacterium tuberculosis.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Poliglactina 910/química , Animais , Anti-Inflamatórios/química , Apoptose , Linhagem Celular , Sobrevivência Celular , Portadores de Fármacos/química , Feminino , Citometria de Fluxo , Humanos , Inflamação/tratamento farmacológico , Ácido Láctico/química , Macrófagos/microbiologia , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mycobacterium tuberculosis , Neutrófilos/metabolismo , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Albumina Sérica/química , Soroalbumina Bovina
2.
Transl Oncol ; 6(3): 319-28, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23730412

RESUMO

We used a novel method based on allele-specific quantitative polymerase chain reaction (Intplex) for the analysis of circulating cell.free DNA (ccfDNA) to compare total ccfDNA and KRAS- or BRAF-mutated ccfDNA concentrations in blood samples from mice xenografted with the human SW620 colorectal cancer (CRC) cell line and from patients with CRC. Intplex enables single-copy detection of variant alleles down to a sensitivity of ≥0.005 mutant to wild-type ratio. The proportion of mutant allele corresponding to the percentage of tumor-derived ccfDNA was elevated in xenografted mice with KRAS homozygous mutation and varied highly from 0.13% to 68.7% in samples from mutation-positive CRC patients (n = 38). Mutant ccfDNA alleles were quantified in the plasma of every patient at stages II/III and IV with a mean of 8.4% (median, 8.4%) and 21.8% (median, 12.4%), respectively. Twelve of 38 (31.6%) and 5 of 38 (13.2%) samples showed a mutation load higher than 25%and 50%, respectively. This suggests that an important part of ccfDNA may originate from tumor cells. In addition, we observed that tumor-derived (mutant) ccfDNA was more fragmented than ccfDNA from normal tissues. This observation suggests that the form of tumor-derived and normal ccfDNA could differ. Our approach revealed that allelic dilution is much less pronounced than previously stated, considerably facilitating the noninvasive molecular analysis of tumors.

3.
Cell Mol Neurobiol ; 31(7): 1103-11, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21618049

RESUMO

Ischemia-reperfusion leads to increased levels at the blood-brain barrier of the multidrug efflux transporter, P-glycoprotein that provides protection to the brain by limiting access of unwanted substances. This is coincident with the production of nitric oxide. This present study using immortalized rat brain endothelial cells (GPNTs) examines whether following hypoxia-reoxygenation, nitric oxide contributes to the alterations in P-glycoprotein levels. After 6 h of hypoxia, both nitric oxide and reactive oxygen species, detected intracellularly using fluorescent monitoring dyes, were produced in the subsequent reoxygenation phase coincident with increased P-glycoprotein. The evidence that nitric oxide can directly affect P-glycoprotein expression was sought by applying S-nitroso-N-acetyl-DL: -penicillamine that as shown increased the nitric oxide generation. Sodium nitroprusside, though more effective at increasing P-glycoprotein expression, appeared to produce different reactive species. Real time RT-PCR analysis revealed the predominant form of nitric oxide synthase in these cells to be endothelial, inhibition of which partially prevented the increase in P-glycoprotein during reoxygenation. These data indicate that the production of nitric oxide by endothelial nitric oxide synthase during reoxygenation can influence P-glycoprotein expression in cells of the blood-rat brain barrier, highlighting another route by which nitric oxide may protect the brain.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Hipóxia/metabolismo , Óxido Nítrico/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Linhagem Celular , Células Endoteliais/citologia , Doadores de Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Oxigênio/metabolismo , Ratos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...