Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 42(18): 11697-706, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25217588

RESUMO

In most organisms, the widely conserved 1-methyl-adenosine58 (m1A58) tRNA modification is catalyzed by an S-adenosyl-L-methionine (SAM)-dependent, site-specific enzyme TrmI. In archaea, TrmI also methylates the adjacent adenine 57, m1A57 being an obligatory intermediate of 1-methyl-inosine57 formation. To study this multi-site specificity, we used three oligoribonucleotide substrates of Pyrococcus abyssi TrmI (PabTrmI) containing a fluorescent 2-aminopurine (2-AP) at the two target positions and followed the RNA binding kinetics and methylation reactions by stopped-flow and mass spectrometry. PabTrmI did not modify 2-AP but methylated the adjacent target adenine. 2-AP seriously impaired the methylation of A57 but not A58, confirming that PabTrmI methylates efficiently the first adenine of the A57A58A59 sequence. PabTrmI binding provoked a rapid increase of fluorescence, attributed to base unstacking in the environment of 2-AP. Then, a slow decrease was observed only with 2-AP at position 57 and SAM, suggesting that m1A58 formation triggers RNA release. A model of the protein-tRNA complex shows both target adenines in proximity of SAM and emphasizes no major tRNA conformational change except base flipping during the reaction. The solvent accessibility of the SAM pocket is not affected by the tRNA, thereby enabling S-adenosyl-L-homocysteine to be replaced by SAM without prior release of monomethylated tRNA.


Assuntos
Adenina/metabolismo , Proteínas Arqueais/metabolismo , RNA de Transferência de Ácido Aspártico/metabolismo , tRNA Metiltransferases/metabolismo , 2-Aminopurina/metabolismo , Proteínas Arqueais/química , Sequência de Bases , Modelos Moleculares , Pyrococcus abyssi/enzimologia , RNA de Transferência de Ácido Aspártico/química , S-Adenosilmetionina/metabolismo , Especificidade por Substrato , tRNA Metiltransferases/química
2.
BMC Struct Biol ; 11: 48, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22168821

RESUMO

BACKGROUND: tRNA m(1)A58 methyltransferases (TrmI) catalyze the transfer of a methyl group from S-adenosyl-L-methionine to nitrogen 1 of adenine 58 in the T-loop of tRNAs from all three domains of life. The m(1)A58 modification has been shown to be essential for cell growth in yeast and for adaptation to high temperatures in thermophilic organisms. These enzymes were shown to be active as tetramers. The crystal structures of five TrmIs from hyperthermophilic archaea and thermophilic or mesophilic bacteria have previously been determined, the optimal growth temperature of these organisms ranging from 37°C to 100°C. All TrmIs are assembled as tetramers formed by dimers of tightly assembled dimers. RESULTS: In this study, we present a comparative structural analysis of these TrmIs, which highlights factors that allow them to function over a large range of temperature. The monomers of the five enzymes are structurally highly similar, but the inter-monomer contacts differ strongly. Our analysis shows that bacterial enzymes from thermophilic organisms display additional intermolecular ionic interactions across the dimer interfaces, whereas hyperthermophilic enzymes present additional hydrophobic contacts. Moreover, as an alternative to two bidentate ionic interactions that stabilize the tetrameric interface in all other TrmI proteins, the tetramer of the archaeal P. abyssi enzyme is strengthened by four intersubunit disulfide bridges. CONCLUSIONS: The availability of crystal structures of TrmIs from mesophilic, thermophilic or hyperthermophilic organisms allows a detailed analysis of the architecture of this protein family. Our structural comparisons provide insight into the different molecular strategies used to achieve the tetrameric organization in order to maintain the enzyme activity under extreme conditions.


Assuntos
Biologia Computacional , Multimerização Proteica , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo , Sequência de Aminoácidos , Bactérias/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Pyrococcus abyssi/enzimologia , Alinhamento de Sequência , Especificidade da Espécie , Temperatura
3.
Structure ; 19(3): 282-91, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21397180

RESUMO

Posttranscriptional chemical modifications of RNA are maturation steps necessary for their correct functioning in translation during protein synthesis. Various structures of RNA-modifying enzymes complexed with RNA fragments or full-length tRNA have been obtained, mimicking several stages along the catalytic cycle such as initial RNA binding, covalent intermediate formation, or RNA-product binding. We summarize here the strategies that have been used to trap and crystallize these stable complexes. Absence of the cosubstrate transferring the chemical group leads to the Michaelis complex, whereas use of a cosubstrate analog to a ternary complex. 5-fluoro-pyrimidine-containing mini RNAs have been used as a general means to trap RNA m(5)U methyltransferase covalent complexes and RNA product/pseudouridine synthase complexes. Altogether, these structures have brought key information about enzyme/RNA recognition and highlighted the details of several catalytic steps of the reactions.


Assuntos
Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias , Biocatálise , Cristalização , Cristalografia por Raios X , Eucariotos , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Cinética , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Biossíntese de Proteínas , Pirimidinas/metabolismo , RNA/genética , Proteínas de Ligação a RNA/genética
4.
Nucleic Acids Res ; 38(18): 6206-18, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20483913

RESUMO

The S-adenosyl-L-methionine dependent methylation of adenine 58 in the T-loop of tRNAs is essential for cell growth in yeast or for adaptation to high temperatures in thermophilic organisms. In contrast to bacterial and eukaryotic tRNA m(1)A58 methyltransferases that are site-specific, the homologous archaeal enzyme from Pyrococcus abyssi catalyzes the formation of m(1)A also at the adjacent position 57, m(1)A57 being a precursor of 1-methylinosine. We report here the crystal structure of P. abyssi tRNA m(1)A57/58 methyltransferase ((Pab)TrmI), in complex with S-adenosyl-L-methionine or S-adenosyl-L-homocysteine in three different space groups. The fold of the monomer and the tetrameric architecture are similar to those of the bacterial enzymes. However, the inter-monomer contacts exhibit unique features. In particular, four disulfide bonds contribute to the hyperthermostability of the archaeal enzyme since their mutation lowers the melting temperature by 16.5°C. His78 in conserved motif X, which is present only in TrmIs from the Thermococcocales order, lies near the active site and displays two alternative conformations. Mutagenesis indicates His78 is important for catalytic efficiency of (Pab)TrmI. When A59 is absent in tRNA(Asp), only A57 is modified. Identification of the methylated positions in tRNAAsp by mass spectrometry confirms that (Pab)TrmI methylates the first adenine of an AA sequence.


Assuntos
Adenina/metabolismo , Proteínas Arqueais/química , Pyrococcus abyssi/enzimologia , RNA de Transferência de Ácido Aspártico/metabolismo , tRNA Metiltransferases/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Dimerização , Dissulfetos/química , Estabilidade Enzimática , Histidina/química , Modelos Moleculares , Mutação , RNA de Transferência de Ácido Aspártico/química , S-Adenosilmetionina/química , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...