Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 106(1-2): 015004, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974615

RESUMO

We examine how disordering joint position influences the linear elastic behavior of lattice materials via numerical simulations in two-dimensional beam networks. Three distinct initial crystalline geometries are selected as representative of mechanically isotropic materials with low connectivity, mechanically isotropic materials with high connectivity, and mechanically anisotropic materials with intermediate connectivity. Introducing disorder generates spatial fluctuations in the elasticity tensor at the local (joint) scale. Proper coarse-graining reveals a well-defined continuum-level scale elasticity tensor. Increasing disorder aids in making initially anisotropic materials more isotropic. The disorder impact on the material stiffness depends on the lattice connectivity: Increasing the disorder softens lattices with high connectivity and stiffens those with low connectivity, without modifying the scaling between elastic modulus and density (linear scaling for high connectivity and cubic scaling for low connectivity). Introducing disorder in lattices with intermediate fixed connectivity reveals both scaling: the linear scaling occurs for low density, the cubic one at high density, and the crossover density increases with disorder. Contrary to classical formulations, this work demonstrates that connectivity is not the sole parameter governing elastic modulus scaling. It offers a promising route to access novel mechanical properties in lattice materials via disordering the architectures.

2.
Int J Pharm ; 622: 121871, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35636627

RESUMO

Multiple w/o/w emulsions (MEs) are promising systems for protecting fragile hydrophilic drugs and controlling their release. We explore the capacity of a single pH-sensitive copolymer, PDMS60-b-PDMAEMA50, and salts, to form and stabilize MEs loaded with sucrose or catechin by a one-step mechanical process or a microfluidic method. ME cytotoxicity was evaluated in various conditions of pH. Using the mechanical process, the most stable emulsions were obtained with Miglyol®812 N and isopropyl myristate in a final pH range of 8-12 and [0.3 M-1 M] NaCl concentrations. Conversely, with the microfluidic method, isopropyl myristate at pH 3 without salt was more efficient. Catechin strongly affected the formation of droplets by the mechanical process but did not modify the conditions of stability of MEs obtained by the microfluidic method. The antioxidant power of catechin was preserved in the inner droplets, even in emulsions prepared by the mechanical method at pH 8. An incomplete release of sucrose and catechin from the emulsions was observed and attributed to the interaction of molecules with the copolymer through hydrogen bonding. This study highlights some of the barriers to break to formulate multiple emulsions stabilized by a PDMS-b-PDMAEMA copolymer or other polymers which can form hydrogen bonds interaction with encapsulated drugs.


Assuntos
Catequina , Catequina/química , Interações Medicamentosas , Emulsões/química , Concentração de Íons de Hidrogênio , Microfluídica , Polímeros/química , Sacarose , Água/química
3.
Int J Pharm ; 609: 121117, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34562556

RESUMO

Small interfering RNAs (siRNA) are attractive and powerful tools to inhibit the expression of a targeted gene. However, their extreme hydrophilicities combined with a negative charge and short plasma half-life counteract their use as therapeutics. Previously, we chemically linked siRNA to squalene (SQ) which self-assembled as nanoparticles (NPs) with pharmacological efficiency in cancers and recently in a hereditary neuropathy. In order to understand the siRNA-SQ NP assembly and fate once intravenously injected, the present study detailed characterization of siRNA-SQ NP structure and its interaction with serum components. From SAXS and SANS analysis, we propose that the siRNA-SQ bioconjugate self-assembled as 11-nm diameter supramolecular assemblies, which are connected one to another to form spherical nanoparticles of around 130-nm diameter. The siRNA-SQ NPs were stable in biological media and interacted with serum components, notably with albumin and LDL. The high specificity of siRNA to decrease or normalize gene expression and the high colloidal stability when encapsulated into squalene nanoparticles offer promising targeted therapy with wide applications for pathologies with gene expression dysregulation.


Assuntos
Nanopartículas , RNA Interferente Pequeno , Espalhamento a Baixo Ângulo , Esqualeno , Difração de Raios X
4.
Colloids Surf B Biointerfaces ; 203: 111751, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33865086

RESUMO

Amphiphilic peptides that induce catalysis are interesting alternatives to natural enzymes thanks to robustness of their synthesis and the ability to induce certain types of conformations by specific motifs of amino acid sequences. Various studies aimed at mimicking the activity of serine proteases by designed peptides. Here we demonstrate that the order by which the catalytic triad residues are positioned along amphiphilic ß-strands influences both assembly structures and catalytic activity. A set of three ß-sheet amphiphilic peptides, decorated with different orders of the catalytic triad amino acids, Glu, His and Ser along the strands were evaluated for their catalytic hydrolysis efficiency of p-nitrophenyl acetate (pNPA) substrate. Among the three peptides, Ac-Cys-Phe-Glu-Phe-Ser-Phe-His-Phe-Pro-NH2 (ESH) achieved the greatest catalytic efficiency with a value of 0.19 M-1 s-1, at peptide concentration of 250 µM. This study sheds light on an overlooked factor in designing catalytic amphiphilic assemblies whereby charged residues that make up the active sites, are in fact engaged in intermolecular stabilizing interactions that in turn may hamper their catalytic action.


Assuntos
Aminoácidos , Peptídeos , Sequência de Aminoácidos , Catálise , Hidrólise
5.
Soft Matter ; 16(35): 8179-8186, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32761014

RESUMO

Building 3D ordered nanostructures by copolymer deposition on a substrate implies a full control beyond the thin film regime. We have used here block copolymers (BCPs) forming bulk lamellar phases to form thick, i.e. much thicker than the lamellar period, structured films on a substrate. Films are formed by a simple method of multiple successive coatings. The film structure is controlled using the combined action of surface templating and annealing time. Sections of the thick layers were characterized by scanning electron microscopy (SEM) after etching of one of the BCP moieties. We show that perfect hexagonally perforated films (HPL) with lamellae parallel to the substrate are formed for a wide thickness range up to 300 nm. Grazing incidence small angle X-ray scattering (GISAXS) confirms such an organization by revealing that perforations sit on a hexagonal lattice. A lamellar organization perpendicular to the substrate is shown to take over for thicker films. A scenario consistent with our observations is proposed, where the sequence of phases results from the balance between surface and stretching energy effects.

6.
Lab Chip ; 20(17): 3213-3229, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32735308

RESUMO

We present and fully characterize a flow cell dedicated to imaging in liquid at the nanoscale. Its use as a routine sample environment for soft X-ray spectromicroscopy is demonstrated, in particular through the spectral analysis of inorganic particles in water. The care taken in delineating the fluidic pathways and the precision associated with pressure actuation ensure the efficiency of fluid renewal under the beam, which in turn guarantees a successful utilization of this microfluidic tool for in situ kinetic studies. The assembly of the described flow cell necessitates no sophisticated microfabrication and can be easily implemented in any laboratory. Furthermore, the design principles we relied on are transposable to all microscopies involving strongly absorbed radiation (e.g. X-ray, electron), as well as to all kinds of X-ray diffraction/scattering techniques.

7.
Nanoscale ; 12(4): 2793-2809, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31961354

RESUMO

In the field of nanomedicine, nanostructured nanoparticles (NPs) made of self-assembling prodrugs emerged in the recent years with promising properties. In particular, squalene-based drug nanoparticles have already shown their efficiency through in vivo experiments. However, a complete pattern of their stability and interactions in the blood stream is still lacking. In this work we assess the behavior of squalene-adenosine (SQAd) nanoparticles - whose neuroprotective effect has already been demonstrated in murine models - in the presence of fetal bovine serum (FBS) and of bovine serum albumin (BSA), the main protein of blood plasma. Extensive physicochemical characterizations were performed using Small Angle Neutron Scattering (SANS), cryogenic transmission electron microscopy (Cryo-TEM), circular dichroism (CD), steady-state fluorescence spectroscopy (SSFS) and isothermal titration calorimetry (ITC) as well as in silico by means of ensemble docking simulations with human serum albumin (HSA). Significant changes in the colloidal stability of the nanoparticles in the presence of serum albumin were observed. SANS, CD and SSFS analyses demonstrated an interaction between SQAd and BSA, with a partial disassembly of the nanoparticles in the presence of BSA and the formation of a complex between SQAd and BSA. The interaction free energy of SQAd nanoparticles with BSA derived from ITC experiments, is about -8 kcal mol-1 which is further supported in silico by ensemble docking simulations. Overall, our results show that serum albumin partially disassembles SQAd nanoparticles by extracting individual SQAd monomers from them. As a consequence, the SQAd nanoparticles would act as a circulating reservoir in the blood stream. The approach developed in this study could be extended to other soft organic nanoparticles.


Assuntos
Adenosina/química , Nanopartículas/química , Albumina Sérica/metabolismo , Esqualeno/química , Adenosina/metabolismo , Animais , Sítios de Ligação , Coloides , Estabilidade de Medicamentos , Humanos , Camundongos , Nanopartículas/metabolismo , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Ligação Proteica , Albumina Sérica/química , Esqualeno/metabolismo
8.
Soft Matter ; 13(39): 7161-7171, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28902225

RESUMO

Phase separation of thermo-responsive polymers in solution is a complex process, whose understanding is essential to screen and design materials with diverse technological applications. Here we report on a method based on dynamic light scattering (DLS) experiments to investigate the phase separation of thermo-responsive polymer solutions and precisely define the transition temperature (TPS). Our results are applied on hydroxypropylcellulose (HPC) solutions as an important biosourced green water-soluble polymer. As determined by DLS, the amplitudes of the fast and slow modes of relaxation dynamics evolve as temperature gets closer to the phase transition point eventually leading to phase separation. The evolution of relaxation modes with temperature is markedly different for concentrations below the overlap concentration (c*) (dilute regime), above c* (semi-dilute regime) and above the entanglement concentration (ce). In the three cases though, the fast and slow mode amplitudes undergo a sharp transition in a narrow temperature range, defining accurately the phase separation locus. The results agree with turbidimetric analysis for the phase transition determination but with a better precision. Our results also show that the one-phase dynamics and phase separation dynamics in the two-phase region are only in continuity for c > ce, revealing mechanistic details about the HPC phase separation process. Above TPS we identify a temperature range where the intensity autocorrelation function has a single-exponential shape. In the latter regime, we monitor the growth kinetics of polymer domains and provide clues to rationalize the stabilizing effects of the interfaces leading to the arrested-like phase separation behavior observed for HPC.

9.
Langmuir ; 32(42): 10912-10919, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27615806

RESUMO

Multiple water-in-oil-in-water (W/O/W) emulsions are promising materials in designing carriers of hydrophilic molecules or drug delivery systems, provided stability issues are solved and biocompatible chemicals can be used. In this work, we designed a biocompatible amphiphilic copolymer, poly(dimethylsiloxane)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMS-b-PDMAEMA), that can stabilize emulsions made with various biocompatible oils. The hydrophilic/hydrophobic properties of the copolymer can be adjusted using both pH and ionic strength stimuli. Consequently, the making of O/W (oil in water), W/O (water in oil), and W/O/W emulsions can be achieved by sweeping the pH and ionic strength. Of importance, W/O/W emulsions are formulated over a large pH and ionic strength domain in a one-step emulsification process via transitional phase inversion and are stable for several months. Cryo-TEM and interfacial tension studies show that the formation of these W/O/W emulsions is likely to be correlated to the interfacial film curvature and microemulsion morphology.

10.
J Phys Chem Lett ; 7(14): 2809-13, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27389283

RESUMO

The fabrication of oriented crystalline thin films is essential for a range of applications ranging from semiconductors to optical components, sensors, and catalysis. Here we show by depositing micrometric crystal particles on a liquid interface from an aerosol phase that the surface tension of the liquid alone can drive the crystallographic orientation of initially randomly oriented particles. The X-ray diffraction patterns of the particles at the interface are identical to those of a monocrystalline sample cleaved along the {104} (CaCO3) or {111} (CaF2) face. We show how this orientation effect can be used to produce thin coatings of oriented crystals on a solid substrate. These results also have important implications for our understanding of heterogeneous crystal growth beneath amphiphile monolayers and for 2D self-assembly processes at the air-liquid interface.

11.
Langmuir ; 32(18): 4610-8, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27058449

RESUMO

Elasticity of polymer microcapsules (MCs) filled with a liquid fluorinated core is studied by atomic force microscopy (AFM). Accurately characterized spherical tips are employed to obtain the Young's moduli of MCs having four different shell thicknesses. We show that those moduli are effective ones because the samples are composites. The strong decrease of the effective MC elasticity (from 3.0 to 0.1 GPa) as the shell thickness decreases (from 200 to 10 nm) is analyzed using a novel numerical approach. This model describes the evolution of the elasticity of a coated half-space according to the contact radius, the thickness of the film, and the elastic moduli of bulk materials. This numerical model is consistent with the experimental data and allows simulating the elastic behavior of MCs at high frequencies (5 MHz). While the quasi-static elasticity of the MCs is found to be very dependent on the shell thickness, the high frequency (5 MHz) elastic behavior of the core leads to a stable behavior of the MCs (from 2.5 to 3 GPa according to the shell thickness). Finally, the effect of thermal annealing on the MCs elasticity is investigated. The Young's modulus is found to decrease because of the reduction of the shell thickness due to the loss of the polymer.

12.
Soft Matter ; 12(7): 2200-7, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26759971

RESUMO

As the need of new methods for the investigation of thin films on various kinds of substrates becomes greater, a novel approach based on AFM nanoindentation is explored. Substrates of polydimethylsiloxane (PDMS) coated by a layer of hard material are probed with an AFM tip in order to obtain the force profile as a function of the indentation. The equivalent elasticity of those composite systems is interpreted using a new numerical approach, the Coated Half-Space Indentation Model of Elastic Response (CHIMER), in order to extract the thicknesses of the upper layer. Two kinds of coating are investigated. First, chitosan films of known thicknesses between 30 and 200 nm were probed in order to test the model. A second type of samples is produced by oxygen plasma oxidation of the PDMS substrate, which results in the growth of a relatively homogeneous oxide layer. The local nature of this protocol enables measurements at long oxidation time, where the apparition of cracks prevents other kinds of measurements.

13.
ACS Nano ; 7(10): 9298-311, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24047230

RESUMO

Polymer vesicles, also named polymersomes, are valuable candidates for drug delivery and micro- or nanoreactor applications. As far as drug delivery is concerned, the shape of the carrier is believed to have a strong influence on the biodistribution and cell internalization. Polymersomes can be submitted to an osmotic imbalance when injected in physiological media leading to morphological changes. To understand these osmotic stress-induced variations in membrane properties and shapes, several nanovesicles made of the graft polymer poly(dimethylsiloxane)-g-poly(ethylene oxide) (PDMS-g-PEO) or the triblock copolymer PEO-b-PDMS-b-PEO were osmotically stressed and observed by light scattering, neutron scattering (SANS), and cryo-transmission electron microscopy (cryo-TEM). Hypotonic shock leads to a swelling of the vesicles, comparable to optically observable giant polymersomes, and hypertonic shock leads to collapsed structures such as stomatocytes and original nested vesicles, the latter being only observed for bilayers classically formed by amphiphilic copolymers. Complementary SANS and cryo-TEM experiments are shown to be in quantitative agreement and highlight the importance of the membrane structure on the behavior of these nanopolymersomes under hypertonic conditions as the final morphology reached depends whether or not the copolymers assemble into a bilayer. The vesicle radius and membrane curvature are also shown to be critical parameters for such transformations: the shape evolution trajectory agrees with theoretical models only for large enough vesicle radii above a threshold value around 4 times the membrane thickness.

14.
Adv Mater ; 25(20): 2844-8, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23483699

RESUMO

The phase inversion of water-toluene emulsions stabilized with a single thermo- and pH-sensitive copolymer occurs through the formation of multiple emulsions. At low pH and ambient temperature, oil in water emulsions are formed which transform into highly stable multiple emulsions at pHs immediately lower than the inversion border. At higher pHs, the emulsion turns into a water in oil one.


Assuntos
Emulsões/química , Concentração de Íons de Hidrogênio , Óleos/química , Polímeros/química , Água/química , Teste de Materiais , Temperatura
15.
Lab Chip ; 12(24): 5257-61, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23124583

RESUMO

We present a microfluidic array that allows lab-on-a-chip-based studies on hundreds of giant vesicles through immobilization, engineering and release of the vesicles. Real-time observations of the vesicular response are reported. This trap-and-release system is also used to efficiently narrow the size distribution of the vesicle population. In addition, it can be applied to a wide range of deformable objects.

16.
Adv Mater ; 24(15): 1952-5, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22434566

RESUMO

The generation of defect-free polymer nanostructures by nanoimprinting methods is described. Long-range nanorheology and shorter-range surface energy effects can be efficiently combined to provide alignment of copolymer lamellae over several micrometers. As an example, a perpendicular organization with respect to circular tracks is shown, demonstrating the possibility of writing ordered radial nanostructures over large distances.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Polímeros/química , Impressão/métodos , Propriedades de Superfície
17.
Langmuir ; 27(7): 3213-8, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21375319

RESUMO

Giant polymer vesicles made by electroformation have been shown to encapsulate salts up to concentrations of about 10 mM. The impermeability of these "polymersomes" to calcium ions is demonstrated by the use of fluorescent probes dedicated to calcium analysis. Permeability to calcium ions can be triggered by the addition of calcimycin, an ionophore molecule that is able to transport cations selectively through the membrane. As a result, we show that the mineralization of calcium carbonate can be induced within the polymersomes, which were previously loaded with carbonate ions. This is a further step toward the use of polymersomes as microreactors and the study of mineralization schemes, including biomimetic ones, in confined environments.


Assuntos
Carbonato de Cálcio/química , Polímeros/química
18.
Langmuir ; 26(20): 15824-9, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20849122

RESUMO

We monitored single-layer Langmuir-Blodgett films of behenic acid deposited on silanized glass or silicon substrates by atomic force microscopy (AFM) in liquid. We observed the in situ transformation of the monolayer to a bilayer when the surrounding solution was NaOH or KOH with pH > 8.3. The final state is that of an inverted bilayer, in which both the hydrophobic OTS (octadecyltrichlorosilane) and the alkane chains are exposed to the surrounding solution, defying common intuition based on hydrophobic-hydrophilic energy considerations. Strong sodium-containing carboxylic dimers formed between the headgroups are shown to be responsible for the stabilization of this configuration; calcium ions slow down/inhibit the transformation.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(4 Pt 1): 041606, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21230286

RESUMO

Evidence of the existence of a transient surface tension between two miscible fluid phases is given. This is done by making use of a density matched free of gravity perturbations, binary liquid of isobutyric acid and water, which presents a miscibility gap and is studied by light scattering. The experiment is performed very near the critical point of the binary liquid, where the diffusion of phases is extremely slow. The surface tension is deduced from the evolution of the structure factor obtained from low angle light scattering. The latter evolution is successfully analyzed in terms of a local equilibrium diffusive approach that makes explicit how the surface tension decreases with time.

20.
Angew Chem Int Ed Engl ; 48(27): 5005-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19479919

RESUMO

Laying the groundwork: The interfacial self-assembly properties of an amyloid peptide were used to develop crystalline nanostructures at air-water interfaces, which were studied by both AFM microscopy and X-ray diffraction (see image). These structures generate regular arrays of functional groups and pave the way to controlled deposition of inorganic materials like that observed in biomineralization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...