Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Z Geburtshilfe Neonatol ; 228(1): 57-64, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330960

RESUMO

INTRODUCTION: SARS-CoV-2 is a viral disease with potentially devastating effects. Observational studies of pregnant women infected with SARS-CoV-2 report an increased risk for FGR. This study utilizes data from a prospective SARS-CoV-2 registry in pregnancy, investigating the progression of fetuses to fetal growth restriction (FGR) at birth following maternal SARS-CoV-2 and evaluating the hypothesis of whether the percentage of SGA at birth is increased after maternal SARS-CoV-2 taking into account the time interval between infection and birth. MATERIALS & METHODS: CRONOS is a prospective German registry enrolling pregnant women with confirmed SARS-CoV-2 infection during their pregnancy. SARS-CoV-2 symptoms, pregnancy- and delivery-specific information were recorded. The data evaluated in this study range from March 2020 until August 2021. Women with SARS-CoV-2 were divided into three groups according to the time of infection/symptoms to delivery: Group I<2 weeks, Group II 2-4 weeks, and Group III>4 weeks. FGR was defined as estimated and/or birth weight<10% ile, appropriate for gestational age (AGA) was within 10 and 90%ile, and large for gestational age (LGA) was defined as fetal or neonatal weight>90%ile. RESULTS: Data for a total of 2,650 SARS-CoV-2-positive pregnant women were available. The analysis was restricted to symptomatic cases that delivered after 24+0 weeks of gestation. Excluding those cases with missing values for estimated fetal weight at time of infection and/or birth weight centile, 900 datasets remained for analyses. Group I consisted of 551 women, Group II of 112 women, and Group III of 237 women. The percentage of changes from AGA to FGR did not differ between groups. However, there was a significantly higher rate of large for gestational age (LGA) newborns at the time of birth compared to the time of SARS-CoV-2 infection in Group III (p=0.0024), respectively. CONCLUSION: FGR rates did not differ between symptomatic COVID infections occurring within 2 weeks and>4 weeks before birth. On the contrary, it presented a significant increase in LGA pregnancies in Group III. However, in this study population, an increase in the percentage of LGA may be attributed to pandemic measures and a reduction in daily activity.


Assuntos
COVID-19 , SARS-CoV-2 , Gravidez , Feminino , Humanos , Recém-Nascido , Peso ao Nascer , Estudos Prospectivos , COVID-19/epidemiologia , Desenvolvimento Fetal , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/epidemiologia , Idade Gestacional
2.
Eur J Immunol ; 48(2): 330-343, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29143318

RESUMO

One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation.


Assuntos
Inibidores de Calcineurina/efeitos adversos , Proteínas do Sistema Complemento/metabolismo , Ciclosporina/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Rejeição de Enxerto/metabolismo , Nefropatias/metabolismo , Transplante de Rim , Túbulos Renais/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Tacrolimo/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Apoptose , Antígenos CD55/metabolismo , Inibidores de Calcineurina/uso terapêutico , Linhagem Celular , Sobrevivência Celular , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Ciclosporina/uso terapêutico , Feminino , Regulação da Expressão Gênica , Humanos , Nefropatias/terapia , Túbulos Renais/patologia , Sistema de Sinalização das MAP Quinases , Masculino , Proteína Cofatora de Membrana/metabolismo , Pessoa de Meia-Idade , Fosforilação , RNA Interferente Pequeno/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Tacrolimo/uso terapêutico
3.
J Biol Chem ; 291(45): 23557-23568, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27624939

RESUMO

Dysfunctional mitochondria contribute to the development of many diseases and pathological conditions through the excessive production of reactive oxygen species (ROS), and, where studied, ablation of p66Shc (p66) was beneficial. p66 translocates to the mitochondria and oxidizes cytochrome c to yield H2O2, which in turn initiates cell death. PKCß-mediated phosphorylation of serine 36 in p66 has been implicated as a key regulatory step preceding mitochondrial translocation, ROS production, and cell death, and PKCß thus may provide a target for therapeutic intervention. We performed a reassessment of PKCß regulation of the oxidoreductase activity of p66. Although our experiments did not substantiate Ser36 phosphorylation by PKCß, they instead provided evidence for Ser139 and Ser213 as PKCß phosphorylation sites regulating the pro-oxidant and pro-apoptotic function of p66. Mutation of another predicted PKCß phosphorylation site also located in the phosphotyrosine binding domain, threonine 206, had no phenotype. Intriguingly, p66 with Thr206 and Ser213 mutated to glutamic acid showed a gain-of-function phenotype with significantly increased ROS production and cell death induction. Taken together, these data argue for a complex mechanism of PKCß-dependent regulation of p66 activation involving Ser139 and a motif surrounding Ser213.


Assuntos
Proteína Quinase C beta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Células 3T3 , Animais , Morte Celular , Deleção de Genes , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Moleculares , Estresse Oxidativo , Oxirredutases/genética , Oxirredutases/metabolismo , Fosforilação , Mutação Puntual , Proteína Quinase C beta/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Serina/genética , Serina/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...