Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 99(1): 101-105, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35578782

RESUMO

The ongoing emergency provoked by the SARS-CoV-2 pandemic demands the development of technologies to mitigate the spread of infection, and UV irradiation is a technique that can efficiently address this issue. However, proper use of UV equipment for disinfection requires an understanding of how the effects on SARS-CoV-2 are dependent on certain parameters. In this work, we determined the UV-C inactivation constant k for SARS-CoV-2 using an LED source at λ = 280 nm. Specifically, a Log3 reduction was measured after irradiation for 24 min with a delivered UV-C dose of 23 J m-2 . By multitarget model fitting, n = 2 and k = 0.32 ± 0.02 m2 J-1 were obtained. A lag time for the inactivation effect was also observed, which was attributed to the low irradiation levels used to perform the study. The combination of k and delay time allows for reliable estimation of disinfection times in small, closed environments.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Raios Ultravioleta , Desinfecção/métodos , Pandemias/prevenção & controle , Inativação de Vírus/efeitos da radiação
2.
Sensors (Basel) ; 18(7)2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973566

RESUMO

MicroElectroMechanical Systems (MEMS) resonators are attracting increasing interest because of their smaller size and better integrability as opposed to their quartz counterparts. However, thermal drift of the natural frequency of silicon structures is one of the main issues that has hindered the development of MEMS resonators. Extensive investigations have addressed both the fabrication process (e.g., introducing heavy doping of the silicon) and the mechanical design (e.g., exploiting proper orientation of the device, slots, nonlinearities). In this work, starting from experimental data published in the literature, we show that a careful design can help reduce the thermal drift even when slots are inserted in the devices in order to decrease thermoelastic losses. A custom numerical code able to predict the dynamic behavior of MEMS resonators for different materials, orientations and doping levels is coupled with an evolutionary optimization algorithm and the possibility to find an optimal mechanical design is demonstrated on a tuning-fork resonator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...