Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898102

RESUMO

In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70-Ku80 heterodimer (Ku), X-ray repair cross complementing 4 (XRCC4) in complex with DNA ligase 4 (X4L4) and XRCC4-like factor (XLF) form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were recently obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at residue resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs lead to the formation of XLF and X4L4 condensates in vitro, which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome-editing strategies.

2.
Cancer Discov ; 13(12): 2548-2565, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37655965

RESUMO

PML nuclear bodies (NB) are disrupted in PML-RARA-driven acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) cures 70% of patients with APL, driving PML-RARA degradation and NB reformation. In non-APL cells, arsenic binding onto PML also amplifies NB formation. Yet, the actual molecular mechanism(s) involved remain(s) elusive. Here, we establish that PML NBs display some features of liquid-liquid phase separation and that ATO induces a gel-like transition. PML B-box-2 structure reveals an alpha helix driving B2 trimerization and positioning a cysteine trio to form an ideal arsenic-binding pocket. Altering either of the latter impedes ATO-driven NB assembly, PML sumoylation, and PML-RARA degradation, mechanistically explaining clinical ATO resistance. This B2 trimer and the C213 trio create an oxidation-sensitive rheostat that controls PML NB assembly dynamics and downstream signaling in both basal state and during stress response. These findings identify the structural basis for arsenic targeting of PML that could pave the way to novel cancer drugs. SIGNIFICANCE: Arsenic curative effects in APL rely on PML targeting. We report a PML B-box-2 structure that drives trimer assembly, positioning a cysteine trio to form an arsenic-binding pocket, which is disrupted in resistant patients. Identification of this ROS-sensitive triad controlling PML dynamics and functions could yield novel drugs. See related commentary by Salomoni, p. 2505. This article is featured in Selected Articles from This Issue, p. 2489.


Assuntos
Arsênio , Arsenicais , Leucemia Promielocítica Aguda , Humanos , Arsênio/farmacologia , Corpos Nucleares da Leucemia Promielocítica , Cisteína , Arsenicais/farmacologia , Óxidos/farmacologia , Trióxido de Arsênio/farmacologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Proteínas Oncogênicas , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
3.
EMBO J ; 42(20): e114106, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37724036

RESUMO

The localization of RNAs in cells is critical for many cellular processes. Whereas motor-driven transport of ribonucleoprotein (RNP) condensates plays a prominent role in RNA localization in cells, their study remains limited by the scarcity of available tools allowing to manipulate condensates in a spatial manner. To fill this gap, we reconstitute in cellula a minimal RNP transport system based on bioengineered condensates, which were functionalized with kinesins and dynein-like motors, allowing for their positioning at either the cell periphery or centrosomes. This targeting mostly occurs through the active transport of the condensate scaffolds, which leads to localized nucleation of phase-separated condensates. Then, programming the condensates to recruit specific mRNAs is able to shift the localization of these mRNAs toward the cell periphery or the centrosomes. Our method opens novel perspectives for examining the role of RNA localization as a driver of cellular functions.


Assuntos
Microtúbulos , Ribonucleoproteínas , Microtúbulos/metabolismo , Ribonucleoproteínas/genética , RNA/genética , RNA Mensageiro/genética , Dineínas/genética , Dineínas/metabolismo
4.
Sci Adv ; 9(33): eadg5663, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37585526

RESUMO

α-Synuclein (α-Syn) aggregation into fibrils with prion-like features is intimately associated with Lewy pathology and various synucleinopathies. Emerging studies suggest that α-Syn could form liquid condensates through phase separation. The role of these condensates in aggregation and disease remains elusive and the interplay between α-Syn fibrils and α-Syn condensates remains unexplored, possibly due to difficulties in triggering the formation of α-Syn condensates in cells. To address this gap, we developed an assay allowing the controlled assembly/disassembly of α-Syn condensates in cells and studied them upon exposure to preformed α-Syn fibrillar polymorphs. Fibrils triggered the evolution of liquid α-Syn condensates into solid-like structures displaying growing needle-like extensions and exhibiting pathological amyloid hallmarks. No such changes were elicited on α-Syn that did not undergo phase separation. We, therefore, propose a model where α-Syn within condensates fuels exogenous fibrillar seeds growth, thus speeding up the prion-like propagation of pathogenic aggregates.


Assuntos
Príons , alfa-Sinucleína , Amiloide/química
5.
bioRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37503201

RESUMO

In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70/80 heterodimer (Ku), XRCC4 in complex with DNA Ligase 4 (X4L4), and XLF form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) have recently been obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here, we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at atomic resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs led to the formation of XLF and X4L4 condensates in vitro which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome editing strategies.

6.
Biophys J ; 121(9): 1675-1690, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35364105

RESUMO

Although it is now recognized that specific RNAs and protein families are critical for the biogenesis of ribonucleoprotein (RNP) condensates, how these molecular constituents determine condensate size and morphology is unknown. To circumvent the biochemical complexity of endogenous RNP condensates, the use of programmable tools to reconstitute condensate formation with minimal constituents can be instrumental. Here we report a methodology to form RNA-containing condensates in living cells programmed to specifically recruit a single RNA species. Our bioengineered condensates are made of ArtiGranule scaffolds composed of an orthogonal protein that can bind to a specific heterologously expressed RNA. These scaffolds undergo liquid-liquid phase separation in cells and can be chemically controlled to prevent condensation or to trigger condensate dissolution. We found that the targeted RNAs localize at the condensate surface, either as isolated RNA molecules or as a homogenous corona of RNA molecules around the condensate. The recruitment of RNA changes the material properties of condensates by hardening the condensate body. Moreover, the condensate size scales with RNA surface density; the higher the RNA density is, the smaller and more frequent the condensates are. These results suggest a mechanism based on physical constraints, provided by RNAs at the condensate surface, that limit condensate growth and coalescence.


Assuntos
Proteínas , RNA , Proteínas/química , RNA/química
7.
ACS Synth Biol ; 9(11): 3030-3041, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927947

RESUMO

The fast-developing field of synthetic biology enables broad applications of programmed microorganisms including the development of whole-cell biosensors, delivery vehicles for therapeutics, or diagnostic agents. However, the lack of spatial control required for localizing microbial functions could limit their use and induce their dilution leading to ineffective action or dissemination. To overcome this limitation, the integration of magnetic properties into living systems enables a contact-less and orthogonal method for spatiotemporal control. Here, we generated a magnetic-sensing Escherichia coli by driving the formation of iron-rich bodies into bacteria. We found that these bacteria could be spatially controlled by magnetic forces and sustained cell growth and division, by transmitting asymmetrically their magnetic properties to one daughter cell. We combined the spatial control of bacteria with genetically encoded-adhesion properties to achieve the magnetic capture of specific target bacteria as well as the spatial modulation of human cell invasions.


Assuntos
Escherichia coli/genética , Bioengenharia/métodos , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Células HeLa , Humanos , Fenômenos Magnéticos , Biologia Sintética/métodos
8.
J Cell Biol ; 219(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31952078

RESUMO

Nucleus centering in mouse oocytes results from a gradient of actin-positive vesicle activity and is essential for developmental success. Here, we analyze 3D model simulations to demonstrate how a gradient in the persistence of actin-positive vesicles can center objects of different sizes. We test model predictions by tracking the transport of exogenous passive tracers. The gradient of activity induces a centering force, akin to an effective pressure gradient, leading to the centering of oil droplets with velocities comparable to nuclear ones. Simulations and experimental measurements show that passive particles subjected to the gradient exhibit biased diffusion toward the center. Strikingly, we observe that the centering mechanism is maintained in meiosis I despite chromosome movement in the opposite direction; thus, it can counteract a process that specifically off-centers the spindle. In conclusion, our findings reconcile how common molecular players can participate in the two opposing functions of chromosome centering versus off-centering.


Assuntos
Núcleo Celular/metabolismo , Meiose , Prófase Meiótica I , Modelos Biológicos , Oócitos/metabolismo , Vesículas Transportadoras/metabolismo , Actinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/genética , Células Cultivadas , Simulação por Computador , Difusão , Feminino , Gotículas Lipídicas/metabolismo , Camundongos , Análise Numérica Assistida por Computador , Tamanho das Organelas , Tamanho da Partícula , Fatores de Tempo , Vesículas Transportadoras/genética
9.
Soft Matter ; 15(44): 9111-9119, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31670322

RESUMO

The diversity of functions achieved by living cells result from the collective behavior of biological components that interact through multiple scales in time and space. The cytoskeleton constitutes one canonical system forming dynamic organizations when interacting with molecular motors. These materials constitute a state of active matter that exhibit out-of-equilibrium behavior with oriented order in the presence of energy. However, such active materials are highly dependent on the intrinsic properties of their constituents (fibers, molecular motors, and energy), which makes it difficult to control their behavior. Being able to manipulate directly the constitutive elements of the active gel could provide additional control parameters. Here, we report a strategy to functionalize and manipulate active microtubule-based structures upon magnetic actuation. We engineered protein nanocage ferritins as magnetic labels targeting molecular motors (Eg5 kinesin motors). We first mixed these magnetic motors with individual microtubules, allowing for their manipulation. In order to generate a magnetic-responsive gel, we then mixed the magnetic motors with active microtubule-based structures and characterized their dynamic behavior. We found that the magnetic forces applied on magnetic motors slowed down the dynamics of the microtubule structures as well as constrained their rotation. Our results highlight how genetically encoded magnetic elements, behaving as magnetic actuators, could perturb active gels.

10.
Nat Commun ; 10(1): 3230, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324804

RESUMO

Liquid-liquid phase separation is thought to be a key organizing principle in eukaryotic cells to generate highly concentrated dynamic assemblies, such as the RNP granules. Numerous in vitro approaches have validated this model, yet a missing aspect is to take into consideration the complex molecular mixture and promiscuous interactions found in vivo. Here we report the versatile scaffold ArtiG to generate concentration-dependent RNA-protein condensates within living cells, as a bottom-up approach to study the impact of co-segregated endogenous components on phase separation. We demonstrate that intracellular RNA seeds the nucleation of the condensates, as it provides molecular cues to locally coordinate the formation of endogenous high-order RNP assemblies. Interestingly, the co-segregation of intracellular components ultimately impacts the size of the phase-separated condensates. Thus, RNA arises as an architectural element that can influence the composition and the morphological outcome of the condensate phases in an intracellular context.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Ribonucleoproteínas/metabolismo , Grânulos Citoplasmáticos/química , Células HeLa , Humanos , Cinética , Microscopia Eletrônica de Transmissão , Ligação Proteica , Mapas de Interação de Proteínas , RNA/química , Proteínas de Ligação a RNA/química , Ribonucleoproteínas/química , Ribonucleoproteínas/ultraestrutura
11.
Proc Natl Acad Sci U S A ; 116(27): 13346-13351, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31217293

RESUMO

The spatial regulation of messenger RNA (mRNA) translation is central to cellular functions and relies on numerous complex processes. Biomimetic approaches could bypass these endogenous complex processes, improve our comprehension of the regulation, and allow for controlling local translation regulations and functions. However, the causality between local translation and nascent protein function remains elusive. Here, we developed a nanoparticle (NP)-based strategy to magnetically control mRNA spatial patterns in mammalian cell extracts and investigate how local translation impacts nascent protein localization and function. By monitoring the translation of the magnetically localized mRNAs, we show that mRNA-NP complexes operate as a source for the continuous production of proteins from defined positions. By applying this approach to actin-binding proteins, we triggered the local formation of actin cytoskeletons and identified the minimal requirements for spatial control of the actin filament network. In addition, our bottom-up approach identified a role for mRNA as a translation-coupled scaffold for the function of nascent N-terminal protein domains. Our approach will serve as a platform for regulating mRNA localization and investigating the function of nascent protein domains during translation.


Assuntos
Nanopartículas de Magnetita , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Actinas/metabolismo , Materiais Biomiméticos , Citoesqueleto/metabolismo , Células HeLa , Humanos , RNA Mensageiro/fisiologia
12.
Curr Biol ; 28(16): 2647-2656.e4, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30100343

RESUMO

Coordination between actin filaments and microtubules is critical to complete important steps during cell division. For instance, cytoplasmic actin filament dynamics play an active role in the off-center positioning of the spindle during metaphase I in mouse oocytes [1-3] or in gathering the chromosomes to ensure proper spindle formation in starfish oocytes [4, 5], whereas cortical actin filaments control spindle rotation and positioning in adherent cells or in mouse oocytes [6-9]. Several molecular effectors have been found to facilitate anchoring between the meiotic spindle and the cortical actin [10-14]. In vitro reconstitutions have provided detailed insights in the biochemical and physical interactions between microtubules and actin filaments [15-20]. Yet how actin meshwork architecture affects microtubule dynamics is still unclear. Here, we reconstituted microtubule aster in the presence of a meshwork of actin filaments using confined actin-intact Xenopus egg extracts. We found that actin filament branching reduces the lengths and growth rates of microtubules and constrains the mobility of microtubule asters. By reconstituting the interaction between dynamic actin filaments and microtubules in a minimal system based on purified proteins, we found that the branching of actin filaments is sufficient to block microtubule growth and trigger microtubule disassembly. In a further exploration of Xenopus egg extracts, we found that dense and static branched actin meshwork perturbs monopolar spindle assembly by constraining the motion of the spindle pole. Interestingly, monopolar spindle assembly was not constrained in conditions supporting dynamic meshwork rearrangements. We propose that branched actin filament meshwork provides physical barriers that limit microtubule growth.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/fisiologia , Microtúbulos/fisiologia , Oócitos/fisiologia , Xenopus laevis/fisiologia , Animais
13.
Sci Rep ; 7(1): 11344, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900114

RESUMO

Artificial bio-based scaffolds offer broad applications in bioinspired chemistry, nanomedicine, and material science. One current challenge is to understand how the programmed self-assembly of biomolecules at the nanometre level can dictate the emergence of new functional properties at the mesoscopic scale. Here we report a general approach to design genetically encoded protein-based scaffolds with modular biochemical and magnetic functions. By combining chemically induced dimerization strategies and biomineralisation, we engineered ferritin nanocages to nucleate and manipulate microtubule structures upon magnetic actuation. Triggering the self-assembly of engineered ferritins into micrometric scaffolds mimics the function of centrosomes, the microtubule organizing centres of cells, and provides unique magnetic and self-organizing properties. We anticipate that our approach could be transposed to control various biological processes and extend to broader applications in biotechnology or material chemistry.


Assuntos
Fenômenos Químicos , Magnetismo , Microtúbulos/química , Microtúbulos/metabolismo , Animais , Biomineralização , Ferritinas/química , Ferritinas/metabolismo , Ferritinas/ultraestrutura , Humanos , Microtúbulos/ultraestrutura , Nanoestruturas/química , Ligação Proteica , Proteínas Recombinantes
14.
Biomicrofluidics ; 9(4): 044101, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26221196

RESUMO

A microfluidic device is a powerful tool to manipulate in a controlled manner at spatiotemporal scales for biological systems. Here, we describe a simple diffusion-based assay to generate and measure the effect of biochemical perturbations within the cytoplasm of cell-free extracts from Xenopus eggs. Our approach comprises a microliter reservoir and a model cytoplasm that are separated by a synthetic membrane containing sub-micrometric pores through which small molecules and recombinant proteins can diffuse. We have used this system to examine the perturbation of elements of the mitotic spindle, which is a microtubule-based bipolar structure involved in the segregation of the replicated genome to daughter cells during cell division. First, we used the small molecule inhibitor monastrol to target kinesin-5, a molecular motor that maintains the microtubule spindle bipolarity. Next, we explored the dynamics of the mitotic spindle by monitoring the exchange between unpolymerized and polymerized tubulin within microtubule fibers. These results show that a simple diffusion-based system can generate biochemical perturbations directly within a cell-free cytoplasm based on Xenopus egg extracts at the time scale of minutes. Our assay is therefore suitable for monitoring the dynamics of supramolecular assemblies within cell-free extracts in response to perturbations. This strategy opens up broad perspectives including phenotype screening or mechanistic studies of biological assembly processes and could be applied to other cell-free extracts such as those derived from mammalian or bacterial cells.

15.
Artigo em Inglês | MEDLINE | ID: mdl-25377512

RESUMO

Our ability to quantitatively control the spatiotemporal properties of cellular information processing is key for understanding biological systems at both mechanistic and systemic level. In this context, magnetic field offers a relevant strategy of control over cellular processes that broaden the toolbox currently available in cell biology. Among the increasing number of methods, we will focus on recent advances based on magnetic nanoparticles conjugated to proteins to trigger specific signaling pathways and cellular processes. Extracellular or intracellular manipulations of nanoparticles permit magnetic control of ion channels and membrane receptor activation, protein positioning within cells and cytoskeleton spatial engineering. These approaches provide powerful strategies to examine the organization principles of living cells.


Assuntos
Campos Magnéticos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/efeitos da radiação , Micromanipulação/métodos , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação , Animais , Humanos
16.
ACS Nano ; 7(11): 9647-54, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24144301

RESUMO

Living systems offer attractive strategies to generate nanoscale structures because of their innate functional properties such as the dynamic assembly of ordered nanometer fibers, the generation of mechanical forces, or the directional transport mediated by molecular motors. The design of hybrid systems, capable of interfacing artificial building blocks with biomolecules, may be a key step toward the rational design of nanoscale devices and materials. Here, we have designed a bottom-up approach to organize cytoskeletal elements in space using the self-assembly properties of magnetic nanoparticles conjugated to signaling proteins involved in microtubule nucleation. We show that magnetic nanoparticles conjugated to signaling proteins involved in microtubule nucleation can control the positioning of microtubule assembly. Under a magnetic field, a self-organized pattern of biofunctionalized nanoparticles is formed and leads to the nucleation of a periodical network of microtubules in Xenopus laevis egg extract. Our method shows how bioactive nanoparticles can generate a biochemically active pattern upon magnetic actuation, which triggers the spatial organization of nonequilibrium biological structures.


Assuntos
Magnetismo , Microtúbulos/química , Proteínas/química , Animais , Citoesqueleto/metabolismo , Técnicas Analíticas Microfluídicas , Microscopia de Fluorescência , Microtúbulos/metabolismo , Nanopartículas/química , Nanotecnologia/métodos , Polietilenoglicóis/química , Polímeros/química , Proteínas Recombinantes/química , Transdução de Sinais , Estresse Mecânico , Xenopus laevis/metabolismo , Proteína ran de Ligação ao GTP/metabolismo
17.
Analyst ; 138(19): 5627-38, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23897394

RESUMO

3-Methoxy-17α-ethynylestradiol or mestranol is a prodrug for ethynylestradiol and the estrogen component of some oral contraceptive formulations. We demonstrate here that a single core multimodal probe for imaging - SCoMPI - can be efficiently grafted onto mestranol allowing its tracking in two breast cancer cell lines, MDA-MB-231 and MCF-7 fixed cells. Correlative imaging studies based on luminescence (synchrotron UV spectromicroscopy, wide field and confocal fluorescence microscopies) and vibrational (AFMIR, synchrotron FTIR spectromicroscopy, synchrotron-based multiple beam FTIR imaging, confocal Raman microspectroscopy) spectroscopies were consistent with one another and showed a Golgi apparatus distribution of the SCoMPI-mestranol conjugate in both cell lines.


Assuntos
Neoplasias da Mama , Estrogênios/análise , Medições Luminescentes/métodos , Imagem Multimodal/métodos , Vibração , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
18.
Nat Nanotechnol ; 8(3): 199-205, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23334169

RESUMO

Decisions on the fate of cells and their functions are dictated by the spatiotemporal dynamics of molecular signalling networks. However, techniques to examine the dynamics of these intracellular processes remain limited. Here, we show that magnetic nanoparticles conjugated with key regulatory proteins can artificially control, in time and space, the Ran/RCC1 signalling pathway that regulates the cell cytoskeleton. In the presence of a magnetic field, RanGTP proteins conjugated to superparamagnetic nanoparticles can induce microtubule fibres to assemble into asymmetric arrays of polarized fibres in Xenopus laevis egg extracts. The orientation of the fibres is dictated by the direction of the magnetic force. When we locally concentrated nanoparticles conjugated with the upstream guanine nucleotide exchange factor RCC1, the assembly of microtubule fibres could be induced over a greater range of distances than RanGTP particles. The method shows how bioactive nanoparticles can be used to engineer signalling networks and spatial self-organization inside a cell environment.


Assuntos
Proteínas de Ciclo Celular/isolamento & purificação , Citoesqueleto/química , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Nanopartículas de Magnetita/química , Proteínas Nucleares/isolamento & purificação , Proteína ran de Ligação ao GTP/isolamento & purificação , Animais , Proteínas de Ciclo Celular/química , Diferenciação Celular , Núcleo Celular/química , Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Proteínas Nucleares/química , Transdução de Sinais , Xenopus laevis/metabolismo , Proteína ran de Ligação ao GTP/química
19.
Biotechnol Adv ; 31(3): 393-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22326416

RESUMO

1,1-Di(4-hydroxyphenyl)-2-cyrhetrenylbut-1-ene 1 is an organometallic conjugate where a [(Cp)Re(CO)(3)] unit is linked to a hydroxytamoxifen-like structure. Its subcellular nuclear distribution was previously observed in a single cell using the near-field technique AFMIR. We show here that synchrotron radiation FTIR spectromicroscopy (SR-FTIR-SM) enabled the mapping of 1 based on its IR-signature (characteristic bands in the 1850-2200 cm(-1) range) and pointed out the colocalization of 1 with an area of high amide density. Fluorescence microscopy using DAPI staining performed on the same cells confirmed that this area corresponds to the cell nucleus.


Assuntos
Microscopia de Fluorescência/métodos , Compostos Organometálicos/análise , Fenóis/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Tamoxifeno/análogos & derivados , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral/metabolismo , Núcleo Celular/metabolismo , Feminino , Humanos , Compostos Organometálicos/farmacocinética , Fenóis/farmacocinética , Rênio/análise , Espectrofotometria Infravermelho/métodos , Síncrotrons
20.
Proc Natl Acad Sci U S A ; 109(29): 11705-10, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753521

RESUMO

In vivo, F-actin flows are observed at different cell life stages and participate in various developmental processes during asymmetric divisions in vertebrate oocytes, cell migration, or wound healing. Here, we show that confinement has a dramatic effect on F-actin spatiotemporal organization. We reconstitute in vitro the spontaneous generation of F-actin flow using Xenopus meiotic extracts artificially confined within a geometry mimicking the cell boundary. Perturbations of actin polymerization kinetics or F-actin nucleation sites strongly modify the network flow dynamics. A combination of quantitative image analysis and biochemical perturbations shows that both spatial localization of F-actin nucleators and actin turnover play a decisive role in generating flow. Interestingly, our in vitro assay recapitulates several symmetry-breaking processes observed in oocytes and early embryonic cells.


Assuntos
Actinas/metabolismo , Citoplasma/metabolismo , Meiose/fisiologia , Xenopus/fisiologia , Animais , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Cinética , Microscopia de Fluorescência , Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...