Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809230

RESUMO

Water deficit represents an important challenge for wheat production in many regions of the world. Accumulation and remobilization of water-soluble carbohydrates (WSCs) in stems are part of the physiological responses regulated by plants to cope with water stress and, in turn, determine grain yield (GY). The genetic mechanisms underlying the variation in WSC are only partially understood. In this study, we aimed to identify Single Nucleotide Polymorphism (SNP) markers that account for variation in a suite of WSC and GY, evaluated in 225 cultivars and advanced lines of spring wheat. These genotypes were established in two sites in the Mediterranean region of Central Chile, under water-limited and full irrigation conditions, and assessed in two growing seasons, namely anthesis and maturity growth periods. A genome-wide association study (GWAS) was performed by using 3243 SNP markers. Genetic variance accounted for 5 to 52% of phenotypic variation of the assessed traits. A rapid linkage disequilibrium decay was observed across chromosomes (r2 ≤ 0.2 at 2.52 kbp). Marker-trait association tests identified 96 SNPs related to stem weight (SW), WSCs, and GY, among other traits, at the different sites, growing seasons, and growth periods. The percentage of SNPs that were part of the gene-coding regions was 34%. Most of these genes are involved in the defensive response to drought and biotic stress. A complimentary analysis detected significant effects of different haplotypes on WSC and SW, in anthesis and maturity. Our results evidence both genetic and environmental influence on WSC dynamics in spring wheat. At the same time, they provide a series of markers suitable for supporting assisted selection approaches and functional characterization of genes.

2.
BMC Genomics ; 20(1): 875, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747881

RESUMO

BACKGROUND: Populus trichocarpa is an important forest tree species for the generation of lignocellulosic ethanol. Understanding the genomic basis of biomass production and chemical composition of wood is fundamental in supporting genetic improvement programs. Considerable variation has been observed in this species for complex traits related to growth, phenology, ecophysiology and wood chemistry. Those traits are influenced by both polygenic control and environmental effects, and their genome architecture and regulation are only partially understood. Genome wide association studies (GWAS) represent an approach to advance that aim using thousands of single nucleotide polymorphisms (SNPs). Genotyping using exome capture methodologies represent an efficient approach to identify specific functional regions of genomes underlying phenotypic variation. RESULTS: We identified 813 K SNPs, which were utilized for genotyping 461 P. trichocarpa clones, representing 101 provenances collected from Oregon and Washington, and established in California. A GWAS performed on 20 traits, considering single SNP-marker tests identified a variable number of significant SNPs (p-value < 6.1479E-8) in association with diameter, height, leaf carbon and nitrogen contents, and δ15N. The number of significant SNPs ranged from 2 to 220 per trait. Additionally, multiple-marker analyses by sliding-windows tests detected between 6 and 192 significant windows for the analyzed traits. The significant SNPs resided within genes that encode proteins belonging to different functional classes as such protein synthesis, energy/metabolism and DNA/RNA metabolism, among others. CONCLUSIONS: SNP-markers within genes associated with traits of importance for biomass production were detected. They contribute to characterize the genomic architecture of P. trichocarpa biomass required to support the development and application of marker breeding technologies.


Assuntos
Genoma de Planta , Redes e Vias Metabólicas/genética , Populus/genética , Característica Quantitativa Herdável , Madeira/genética , California , Carbono/metabolismo , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Lignina/biossíntese , Metaboloma , Nitrogênio/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Polimorfismo de Nucleotídeo Único , Populus/metabolismo , Sequenciamento do Exoma , Madeira/metabolismo
3.
Genes (Basel) ; 9(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326657

RESUMO

Aquaporins (AQPs) are transmembrane proteins essential for controlling the flow of water and other molecules required for development and stress tolerance in plants, including important crop species such as wheat (Triticum aestivum). In this study, we utilized a genomic approach for analyzing the information about AQPs available in public databases to characterize their structure and function. Furthermore, we validated the expression of a suite of AQP genes, at the transcriptional level, including accessions with contrasting responses to drought, different organs and water stress levels. We found 65 new AQP genes, from which 60% are copies expanded by polyploidization. Sequence analysis of the AQP genes showed that the purifying selection pressure acted on duplicate genes, which was related to a high conservation of the functions. This situation contrasted with the expression patterns observed for different organs, developmental stages or genotypes under water deficit conditions, which indicated functional divergence at transcription. Expression analyses on contrasting genotypes showed high gene transcription from Tonoplast Intrinsic Protein 1 (TIP1) and 2 (TIP2), and Plasma Membrane Intrinsic Protein 1 (PIP1) and 2 (PIP2) subfamilies in roots and from TIP1 and PIP1 subfamilies in leaves. Interestingly, during severe drought stress, 4 TIP genes analyzed in leaves of the tolerant accession reached up to 15-fold the level observed at the susceptible genotype, suggesting a positive relationship with drought tolerance. The obtained results extend our understanding of the structure and function of AQPs, particularly under water stress conditions.

4.
New Phytol ; 197(1): 162-176, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23157484

RESUMO

Black poplar (Populus nigra) is a potential feedstock for cellulosic ethanol production, although breeding for this specific end use is required. Our goal was to identify associations between single nucleotide polymorphism (SNP) markers within candidate genes encoding cellulose and lignin biosynthetic enzymes, with chemical wood property phenotypic traits, toward the aim of developing genomics-based breeding technologies for bioethanol production. Pyrolysis molecular beam mass spectrometry was used to determine contents of five- and six-carbon sugars, lignin, and syringyl : guaiacyl ratio. The association population included 599 clones from 17 half-sib families, which were successfully genotyped using 433 SNPs from 39 candidate genes. Statistical analyses were performed to estimate genetic parameters, linkage disequilibrium (LD), and single marker and haplotype-based associations. A moderate to high heritability was observed for all traits. The LD, across all candidate genes, showed a rapid decay with physical distance. Analysis of single marker-phenotype associations identified six significant marker-trait pairs, whereas nearly 280 haplotypes were associated with phenotypic traits, in both an individual and multiple trait-specific manner. The rapid decay of LD within candidate genes in this population and the genetic associations identified suggest a close relationship between the associated SNPs and the causative polymorphisms underlying the genetic variation of lignocellulosic traits in black poplar.


Assuntos
Genes de Plantas , Lignina/genética , Populus/genética , Madeira/química , Biomarcadores/química , Estudos de Associação Genética , Técnicas de Genotipagem , Glucosiltransferases/química , Glucosiltransferases/genética , Haplótipos , Lignina/biossíntese , Lignina/química , Modelos Lineares , Desequilíbrio de Ligação , Espectrometria de Massas/métodos , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Polissacarídeos/química , Populus/química , Característica Quantitativa Herdável , Especificidade da Espécie , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
5.
J Econ Entomol ; 102(3): 1070-4, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19610421

RESUMO

Species belonging to the genus Populus (poplars) produce a series of defensive proteins in response to insect damage. Proteinase inhibitors, polyphenol oxidases, and chitinases are the most relevant and intensively studied proteins. Most of the knowledge about the relation between these proteins and herbivores has been obtained from studies with chewing insects. Nothing is known about whether phloem-feeder insects such as aphids are able to trigger a comparable response. In the current study, the expression of genes encoding a Kunitz trypsin inhibitor 3 (KTI3), a polyphenol oxidase 1 (PPO1), and a class I chitinase (CHI) was characterized in two poplar hybrids (one resistant hybrid and one susceptible hybrid, to aphids) attacked by the aphid Chaitophorus leucomelas Koch. The expression pattern was analyzed using a semiquantitative reverse transcription-polymerase chain reaction approach. The expression of KTI3 was increased by aphids only in the aphid-susceptible hybrid. Differently, PPO1 expression was increased by aphids in the aphid-resistant hybrid. The expression of CHI was down-regulated by aphids in the susceptible hybrid. This is the first study to report the differential expression of poplar defense genes in response to phloem-feeder insects such as aphids. The findings from the current study suggest that the expression levels of defensive proteins are affected by poplar genotype and by aphid infestation.


Assuntos
Afídeos/fisiologia , Catecol Oxidase/metabolismo , Quitinases/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Populus/genética , Populus/parasitologia , Inibidores de Proteases/metabolismo , Análise de Variância , Animais , Catecol Oxidase/genética , Quitinases/genética , Primers do DNA/genética , Interações Hospedeiro-Parasita , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...