Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36826992

RESUMO

Brain-derived neurotrophic factor (BDNF) and its receptors tropomyosin kinase receptor B (TrkB) and the p75 neurotrophin receptor (p75) are the primary regulators of dendritic growth in the CNS. After being bound by BDNF, TrkB and p75 are endocytosed into endosomes and continue signaling within the cell soma, dendrites, and axons. We studied the functional role of BDNF axonal signaling in cortical neurons derived from different transgenic mice using compartmentalized cultures in microfluidic devices. We found that axonal BDNF increased dendritic growth from the neuronal cell body in a cAMP response element-binding protein (CREB)-dependent manner. These effects were dependent on axonal TrkB but not p75 activity. Dynein-dependent BDNF-TrkB-containing endosome transport was required for long-distance induction of dendritic growth. Axonal signaling endosomes increased CREB and mTOR kinase activity in the cell body, and this increase in the activity of both proteins was required for general protein translation and the expression of Arc, a plasticity-associated gene, indicating a role for BDNF-TrkB axonal signaling endosomes in coordinating the transcription and translation of genes whose products contribute to learning and memory regulation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Receptor trkB , Camundongos , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Receptor trkB/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Celular , Neurônios/fisiologia , Axônios/metabolismo , Endossomos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
Neurobiol Dis ; 171: 105796, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35728773

RESUMO

Neurons are highly polarized cells that rely on the intracellular transport of organelles. This process is regulated by molecular motors such as dynein and kinesins and the Rab family of monomeric GTPases that together help move cargo along microtubules in dendrites, somas, and axons. Rab5-Rab11 GTPases regulate receptor trafficking along early-recycling endosomes, which is a process that determines the intracellular signaling output of different signaling pathways, including those triggered by BDNF binding to its tyrosine kinase receptor TrkB. BDNF is a well-recognized neurotrophic factor that regulates experience-dependent plasticity in different circuits in the brain. The internalization of the BDNF/TrkB complex results in signaling endosomes that allow local signaling in dendrites and presynaptic terminals, nuclear signaling in somas and dynein-mediated long-distance signaling from axons to cell bodies. In this review, we briefly discuss the organization of the endocytic pathway and how Rab11-recycling endosomes interact with other endomembrane systems. We further expand upon the roles of the Rab11-recycling pathway in neuronal plasticity. Then, we discuss the BDNF/TrkB signaling pathways and their functional relationships with the postendocytic trafficking of BDNF, including axonal transport, emphasizing the role of BDNF signaling endosomes, particularly Rab5-Rab11 endosomes, in neuronal plasticity. Finally, we discuss the evidence indicating that the dysfunction of the early-recycling pathway impairs BDNF signaling, contributing to several neurodegenerative diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doenças Neurodegenerativas , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dineínas/metabolismo , Endossomos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Hipocampo/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Transporte Proteico , Receptor trkB , Proteínas rab de Ligação ao GTP
3.
Front Cell Dev Biol ; 9: 778345, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096813

RESUMO

In the dentate gyrus of the adult hippocampus new neurons are generated from neural precursor cells through different stages including proliferation and differentiation of neural progenitor cells and maturation of newborn neurons. These stages are controlled by the expression of specific transcription factors and epigenetic mechanisms, which together orchestrate the progression of the neurogenic process. However, little is known about the involvement of histone posttranslational modifications, a crucial epigenetic mechanism in embryonic neurogenesis that regulates fate commitment and neuronal differentiation. During embryonic development, the repressive modification trimethylation of histone H3 on lysine 9 (H3K9me3) contributes to the cellular identity of different cell-types. However, the role of this modification and its H3K9 methyltransferases has not been elucidated in adult hippocampal neurogenesis. We determined that during the stages of neurogenesis in the adult mouse dentate gyrus and in cultured adult hippocampal progenitors (AHPs), there was a dynamic change in the expression and distribution of H3K9me3, being enriched at early stages of the neurogenic process. A similar pattern was observed in the hippocampus for the dimethylation of histone H3 on lysine 9 (H3K9me2), another repressive modification. Among H3K9 methyltransferases, the enzymes Suv39h1 and Suv39h2 exhibited high levels of expression at early stages of neurogenesis and their expression decreased upon differentiation. Pharmacological inhibition of these enzymes by chaetocin in AHPs reduced H3K9me3 and concomitantly decreased neuronal differentiation while increasing proliferation. Moreover, Suv39h1 and Suv39h2 knockdown in newborn cells of the adult mouse dentate gyrus by retrovirus-mediated RNA interference impaired neuronal differentiation of progenitor cells. Our results indicate that H3K9me3 and H3K9 methyltransferases Suv39h1 and Suv39h2 are critically involved in the regulation of adult hippocampal neurogenesis by controlling the differentiation of neural progenitor cells.

4.
Clin Epigenetics ; 12(1): 32, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32070418

RESUMO

BACKGROUND: Hexanucleotide repeat expansions of the G4C2 motif in a non-coding region of the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Tissues from C9ALS/FTD patients and from mouse models of ALS show RNA foci, dipeptide-repeat proteins, and notably, widespread alterations in the transcriptome. Epigenetic processes regulate gene expression without changing DNA sequences and therefore could account for the altered transcriptome profiles in C9ALS/FTD; here, we explore whether the critical repressive marks H3K9me2 and H3K9me3 are altered in a recently developed C9ALS/FTD BAC mouse model (C9BAC). RESULTS: Chromocenters that constitute pericentric constitutive heterochromatin were visualized as DAPI- or Nucblue-dense foci in nuclei. Cultured C9BAC astrocytes exhibited a reduced staining signal for H3K9me3 (but not for H3K9me2) at chromocenters that was accompanied by a marked decline in the global nuclear level of this mark. Similar depletion of H3K9me3 at chromocenters was detected in astrocytes and neurons of the spinal cord, motor cortex, and hippocampus of C9BAC mice. The alterations of H3K9me3 in the hippocampus of C9BAC mice led us to identify previously undetected neuronal loss in CA1, CA3, and dentate gyrus, as well as hippocampal-dependent cognitive deficits. CONCLUSIONS: Our data indicate that a loss of the repressive mark H3K9me3 in astrocytes and neurons in the central nervous system of C9BAC mice represents a signature during neurodegeneration and memory deficit of C9ALS/FTD.


Assuntos
Proteína C9orf72/metabolismo , Disfunção Cognitiva/genética , Epigênese Genética/genética , Histonas/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Astrócitos/metabolismo , Disfunção Cognitiva/metabolismo , Metilação de DNA/genética , Dipeptídeos/metabolismo , Modelos Animais de Doenças , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Expressão Gênica , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Transcriptoma/genética
5.
Brain ; 140(12): 3252-3268, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155979

RESUMO

The Dlg4 gene encodes for post-synaptic density protein 95 (PSD95), a major synaptic protein that clusters glutamate receptors and is critical for plasticity. PSD95 levels are diminished in ageing and neurodegenerative disorders, including Alzheimer's disease and Huntington's disease. The epigenetic mechanisms that (dys)regulate transcription of Dlg4/PSD95, or other plasticity genes, are largely unknown, limiting the development of targeted epigenome therapy. We analysed the Dlg4/PSD95 epigenetic landscape in hippocampal tissue and designed a Dlg4/PSD95 gene-targeting strategy: a Dlg4/PSD95 zinc finger DNA-binding domain was engineered and fused to effector domains to either repress (G9a, Suvdel76, SKD) or activate (VP64) transcription, generating artificial transcription factors or epigenetic editors (methylating H3K9). These epi-editors altered critical histone marks and subsequently Dlg4/PSD95 expression, which, importantly, impacted several hippocampal neuron plasticity processes. Intriguingly, transduction of the artificial transcription factor PSD95-VP64 rescued memory deficits in aged and Alzheimer's disease mice. Conclusively, this work validates PSD95 as a key player in memory and establishes epigenetic editing as a potential therapy to treat human neurological disorders.


Assuntos
Doença de Alzheimer/genética , Comportamento Animal , Cognição , Proteína 4 Homóloga a Disks-Large/genética , Repressão Epigenética , Hipocampo/metabolismo , Memória , Ativação Transcricional , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Epigênese Genética , Código das Histonas , Humanos , Camundongos , Camundongos Transgênicos , Ratos , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...