Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 8(12)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182542

RESUMO

In the last few decades, the field of nanomedicine applied to cancer has revolutionized cancer treatment: several nanoformulations have already reached the market and are routinely being used in the clinical practice. In the case of genetic nanomedicines, i.e., designed to deliver gene therapies to cancer cells for therapeutic purposes, advances have been less impressive. This is because of the many barriers that limit the access of the therapeutic nucleic acids to their target site, and the lack of models that would allow for an improvement in the understanding of how nanocarriers can be tailored to overcome them. Zebrafish has important advantages as a model species for the study of anticancer therapies, and have a lot to offer regarding the rational development of efficient delivery of genetic nanomedicines, and hence increasing the chances of their successful translation. This review aims to provide an overview of the recent advances in the development of genetic anticancer nanomedicines, and of the zebrafish models that stand as promising tools to shed light on their mechanisms of action and overall potential in oncology.

2.
Dalton Trans ; 45(47): 19127-19140, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27868117

RESUMO

The limitations of platinum complexes in cancer treatment have motivated the extensive investigation into other metal complexes such as ruthenium. We herein present the synthesis and characterization of a new family of ruthenium compounds 1a-5a with the general formula [Ru(bipy)2L][CF3SO3]2 (bipy = 2,2'-bipyridine; L = bidentate ligand: N,N; N,P; P,P; P,As) which have been characterized by elemental analysis, ES-MS, 1H and 31P-{1H} NMR, FTIR and conductivity measurements. The molecular structures of four Ru(ii) complexes were determined by single crystal X-ray diffraction. All compounds displayed moderate cytotoxic activity in vitro against human A2780 ovarian, MCF7 breast and HCT116 colorectal tumor cells. Compound 5a was the most cytotoxic compound against A2780 and MCF7 tumor cells with an IC50 of 4.75 ± 2.82 µM and 20.02 ± 1.46 µM, respectively. The compounds showed no cytotoxic effect on normal human primary fibroblasts but rather considerable selectivity for A2780, MCF7 and HCT116 tumor cells. All compounds induce apoptosis and autophagy in A2780 ovarian carcinoma cells and some nuclear DNA fragmentation. All compounds interact with CT-DNA with intrinsic binding constants in the order 1a > 4a > 2a > 3a > 5a. The observed hyperchromic effect may be due to the electrostatic interaction between positively charged cations and the negatively charged phosphate backbone at the periphery of the double helix-CT-DNA. Interestingly, compound 1a shows a concentration dependent DNA double strand cleavage. In addition in vivo toxicity has been evaluated on zebrafish embryos unveiling the differential toxicity between the compounds, with LC50 ranging from 8.67 mg L-1 for compound 1a to 170.30 mg L-1 for compound 2a.


Assuntos
2,2'-Dipiridil , Antineoplásicos , Complexos de Coordenação , Rutênio , 2,2'-Dipiridil/química , 2,2'-Dipiridil/farmacologia , 2,2'-Dipiridil/toxicidade , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/toxicidade , DNA/química , Fragmentação do DNA , Embrião não Mamífero/efeitos dos fármacos , Humanos , Dose Letal Mediana , Estrutura Molecular , Rutênio/química , Rutênio/farmacologia , Rutênio/toxicidade , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...