Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
PLoS One ; 19(5): e0299780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758755

RESUMO

Microalgae's ability to mitigate flue gas is an attractive technology that can valorize gas components through biomass conversion. However, tolerance and growth must be ideal; therefore, acclimation strategies are suggested. Here, we compared the transcriptome and lipidome of Desmodesmus abundans strains acclimated to high CO2 (HCA) and low CO2 (LCA) under continuous supply of model flue gas (MFG) and incomplete culture medium (BG11-N-S). Initial growth and nitrogen consumption from MFG were superior in strain HCA, reaching maximum productivity a day before strain LCA. However, similar productivities were attained at the end of the run, probably because maximum photobioreactor capacity was reached. RNA-seq analysis during exponential growth resulted in 16,435 up-regulated and 4,219 down-regulated contigs in strain HCA compared to LCA. Most differentially expressed genes (DEGs) were related to nucleotides, amino acids, C fixation, central carbon metabolism, and proton pumps. In all pathways, a higher number of up-regulated contigs with a greater magnitude of change were observed in strain HCA. Also, cellular component GO terms of chloroplast and photosystems, N transporters, and secondary metabolic pathways of interest, such as starch and triacylglycerols (TG), exhibited this pattern. RT-qPCR confirmed N transporters expression. Lipidome analysis showed increased glycerophospholipids in strain HCA, while LCA exhibited glycerolipids. Cell structure and biomass composition also revealed strains differences. HCA possessed a thicker cell wall and presented a higher content of pigments, while LCA accumulated starch and lipids, validating transcriptome and lipidome data. Overall, results showed significant differences between strains, where characteristic features of adaptation and tolerance to high CO2 might be related to the capacity to maintain a higher flux of internal C, regulate intracellular acidification, active N transporters, and synthesis of essential macromolecules for photosynthetic growth.


Assuntos
Aclimatação , Dióxido de Carbono , Lipidômica , Transcriptoma , Dióxido de Carbono/metabolismo , Aclimatação/genética , Lipidômica/métodos , Microalgas/genética , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Fotossíntese/genética , Metabolismo dos Lipídeos/genética , Clorofíceas/genética , Clorofíceas/metabolismo
2.
Sci Total Environ ; 927: 172216, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583614

RESUMO

Antibiotic resistance genes (ARGs) are a major threat to human and environmental health. This study investigated the occurrence and distribution of ARGs in Lake Cajititlán, a hypereutrophic subtropical lake in Mexico contaminated by anthropogenic sources (urban wastewater and runoff from crop and livestock production). ARGs (a total of 475 genes) were detected in 22 bacterial genera, with Pseudomonas (144 genes), Stenotrophomonas (88 genes), Mycobacterium (54 genes), and Rhodococcus (27 genes) displaying the highest frequencies of ARGs. Among these, Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed the highest number of ARGs. The results revealed a diverse array of ARGs, including resistance to macrolides (11.55 %), aminoglycosides (8.22 %), glycopeptides (6.22 %), tetracyclines (4 %), sulfonamides (4 %), carbapenems (1.11 %), phenicols (0.88 %), fluoroquinolones (0.44 %), and lincosamides (0.22 %). The most frequently observed ARGs were associated with multidrug resistance (63.33 %), with MexF (42 genes), MexW (36 genes), smeD (31 genes), mtrA (25 genes), and KHM-1 (22 genes) being the most common. Lake Cajititlán is a recreational area for swimming, fishing, and boating, while also supporting irrigation for agriculture and potentially acting as a drinking water source for some communities. This raises concerns about the potential for exposure to antibiotic-resistant bacteria through these activities. The presence of ARGs in Lake Cajititlán poses a significant threat to both human and environmental health. Developing strategies to mitigate the risks of antibiotic resistance, including improving wastewater treatment, and promoting strategic antibiotic use and disposal, is crucial. This study represents a significant advancement in the understanding of antibiotic resistance dynamics in a hypereutrophic subtropical lake in a developing country, providing valuable insights for the scientific community and policymakers.


Assuntos
Resistência Microbiana a Medicamentos , Monitoramento Ambiental , Lagos , Lagos/microbiologia , Resistência Microbiana a Medicamentos/genética , México , Antibacterianos/farmacologia , Metagenômica , Genes Bacterianos , Farmacorresistência Bacteriana/genética , Águas Residuárias/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Poluentes Químicos da Água/análise
4.
Sci Rep ; 14(1): 5703, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459054

RESUMO

This study examined the interplay between bacterial and fungal communities in the human gut microbiota, impacting on nutritional status and body weight. Cohorts of 10 participants of healthy weight, 10 overweight, and 10 obese individuals, underwent comprehensive analysis, including dietary, anthropometric, and biochemical evaluations. Microbial composition was studied via gene sequencing of 16S and ITS rDNA regions, revealing bacterial (bacteriota) and fungal (mycobiota) profiles. Bacterial diversity exceeded fungal diversity. Statistically significant differences in bacterial communities were found within healthy-weight, overweight, and obese groups. The Bacillota/Bacteroidota ratio (previously known as the Firmicutes/Bacteroidetes ratio) correlated positively with body mass index. The predominant fungal phyla were Ascomycota and Basidiomycota, with the genera Nakaseomyces, Kazachstania, Kluyveromyces, and Hanseniaspora, inversely correlating with weight gain; while Saccharomyces, Debaryomyces, and Pichia correlated positively with body mass index. Overweight and obese individuals who harbored a higher abundance of Akkermansia muciniphila, demonstrated a favorable lipid and glucose profiles in contrast to those with lower abundance. The overweight group had elevated Candida, positively linked to simple carbohydrate consumption. The study underscores the role of microbial taxa in body mass index and metabolic health. An imbalanced gut bacteriota/mycobiota may contribute to obesity/metabolic disorders, highlighting the significance of investigating both communities.


Assuntos
Microbioma Gastrointestinal , Micobioma , Saccharomycetales , Humanos , Microbioma Gastrointestinal/genética , Sobrepeso/microbiologia , Estado Nutricional , Bactérias/genética , Obesidade/microbiologia , Bacteroidetes , Firmicutes
5.
J Intellect Disabil Res ; 68(6): 553-563, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38404114

RESUMO

BACKGROUND: Down syndrome (DS) is the most prevalent chromosomal disorder, being the leading cause of intellectual disability. The increased life expectancy of individuals with DS has led to a shift in the incidence of non-communicable chronic diseases, resulting in new concerns, particularly cardiovascular disease (CVD) and Alzheimer's disease. This study aimed to analyse the blood lipid profile of a large DS cohort to establish a baseline for evaluating health risk parameters. METHODS: A comprehensive literature search was conducted on PubMed and Virtual Health Library databases to identify original articles published before July 2022. Selected studies were included in the meta-analysis. RESULTS: Fifteen studies reporting serum lipid levels in individuals with DS were incorporated into the analysis. The meta-analysis used the means and standard deviations extracted from the selected studies. The analysis encompassed 671 participants in the DS group and 898 euploid controls. The results indicated significant differences in total cholesterol [C] (mean difference [MD]: -3.34; CI: 95%: -4.94 to -1.73; P < 0.0001), HDL-C (MD: -3.39; CI: 95%: -6.72 to -0.06; P = 0.05) and triglycerides (MD: 21.48; CI: 95%: 9.32 to 33.65; P = 0.0005) levels between individuals with DS and their control counterparts. CONCLUSIONS: Individuals with DS have less favourable blood lipid concentrations than their controls, particularly HDL-C, triglycerides, and total-C, even when grouped by age. These findings underscore the importance of closer monitoring of lipid profiles in people with DS and the necessity for specific cut-offs for this population, considering the risk for ischemic heart and Alzheimer's diseases.


Assuntos
Síndrome de Down , Humanos , Síndrome de Down/sangue , Síndrome de Down/epidemiologia , Lipídeos/sangue , Adulto , Triglicerídeos/sangue , Colesterol/sangue , Adulto Jovem , Adolescente
6.
PLoS One ; 19(1): e0294494, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170702

RESUMO

Establishing the infant's gut microbiota has long-term implications on health and immunity. Breastfeeding is recognized as the best practice of infant nutrition in comparison with formula feeding. We evaluated the effects of the primary feeding practices by analyzing the infant growth and the potential association with gut diseases. A cross-sectional and observational study was designed. This study included 55 mothers with infants, who were divided according to their feeding practices in breastfeeding (BF), formula feeding (FF), and combined breast and formula feeding (CF). Anthropometric measurements of the participants were recorded. Additionally, non-invasive fecal samples from the infants were collected to analyze the microbiota by sequencing, immunoglobulin A (IgA) concentration (ELISA), and volatile organic compounds (gas chromatography with an electronic nose). Results showed that the microbiota diversity in the BF group was the highest compared to the other two groups. The IgA levels in the BF group were twice as high as those in the FF group. Moreover, the child´s growth in the BF group showed the best infant development when the data were compared at birth to the recollection time, as noted by the correlation with a decreased concentration of toxic volatile organic compounds. Interestingly, the CF group showed a significant difference in health status when the data were compared with the FF group. We conclude that early health practices influence children's growth, which is relevant to further research about how those infants' health evolved.


Assuntos
Microbioma Gastrointestinal , Compostos Orgânicos Voláteis , Recém-Nascido , Lactente , Feminino , Criança , Humanos , Estudos Transversais , Aleitamento Materno , Imunoglobulina A , Fórmulas Infantis
7.
J Environ Manage ; 347: 118993, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37751665

RESUMO

Anaerobic digestion (AD) as a waste management strategy for the organic fraction of municipal waste (OFMSW) has received attention in developed countries for several decades, leading to the development of large-scale plants. In contrast, AD of OFMSW has only recently drawn attention in developing countries. This systematic review was carried out to investigate the implementation of AD to treat the OFMSW in developing countries, focusing on assessing pilot and full-scale AD plants reported in the last ten years. Studies that met the selection criteria were analyzed and data regarding operating parameters, feedstock characteristics, and biogas, digestate, and energy production were extracted. As outlined in this systematic review, AD plants located in developing countries are mostly one-stage mesophilic systems that treat OFMSW via mono-digestion, almost exclusively with the aim of producing electrical energy. Based on the analysis done throughout this systematic review, it was noted that there is a large difference in the maturity level of AD systems between developing and developed countries, mainly due to the economic capacity of developed countries to invest in sustainable waste management systems. However, the number of AD plants reported in scientific papers is significantly lower than the number of installed AD systems. Research articles regarding large-scale implementation of AD to treat OFMSW in developed countries were analyzed and compared with developing countries. This comparison identified practices used in plants in developed countries that could be utilized in the large-scale implementation and success of AD in developing countries. These practices include exploiting potential products with high market-values, forming partnerships with local industries to use industrial wastes as co-substrates, and exploring different biological and physical pretreatment technologies. Additionally, the analysis of capital and operational costs of AD plants showed that costs tend to be higher for developing countries due to their need to import of materials and equipment from developed countries. Technical, economical, and political challenges for the implementation of AD at a large-scale in developing countries are highlighted.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Resíduos Sólidos/análise , Anaerobiose , Países em Desenvolvimento , Reatores Biológicos , Biocombustíveis/análise , Metano
9.
Front Pediatr ; 11: 1193832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342535

RESUMO

Gut metagenome in pediatric subjects with metabolic syndrome (MetS) and type-2 diabetes mellitus (T2DM) has been poorly studied, despite an alarming worldwide increase in the prevalence and incidence of obesity and MetS within this population. The objective of this study was to characterize the gut microbiome taxonomic composition of Mexican pediatric subjects with MetS and T2DM using shotgun metagenomics and analyze the potential relationship with metabolic changes and proinflammatory effects. Paired-end reads of fecal DNA samples were obtained through the Illumina HiSeq X Platform. Statistical analyses and correlational studies were conducted using gut microbiome data and metadata from all individuals. Gut microbial dysbiosis was observed in MetS and T2DM children compared to healthy subjects, which was characterized by an increase in facultative anaerobes (i.e., enteric and lactic acid bacteria) and a decrease in strict anaerobes (i.e., Erysipelatoclostridium, Shaalia, and Actinomyces genera). This may cause a loss of gut hypoxic environment, increased gut microbial nitrogen metabolism, and higher production of pathogen-associated molecular patterns. These metabolic changes may trigger the activation of proinflammatory activity and impair the host's intermediate metabolism, leading to a possible progression of the characteristic risk factors of MetS and T2DM, such as insulin resistance, dyslipidemia, and an increased abdominal circumference. Furthermore, specific viruses (Jiaodavirus genus and Inoviridae family) showed positive correlations with proinflammatory cytokines involved in these metabolic diseases. This study provides novel evidence for the characterization of MetS and T2DM pediatric subjects in which the whole gut microbial composition has been characterized. Additionally, it describes specific gut microorganisms with functional changes that may influence the onset of relevant health risk factors.

10.
BMC Pediatr ; 23(1): 210, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138212

RESUMO

BACKGROUND: Childhood obesity is a serious public health concern that confers a greater risk of developing important comorbidities such as MetS and T2DM. Recent studies evidence that gut microbiota may be a contributing factor; however, only few studies exist in school-age children. Understanding the potential role of gut microbiota in MetS and T2DM pathophysiology from early stages of life might contribute to innovative gut microbiome-based interventions that may improve public health. The main objective of the present study was to characterize and compare gut bacteria of T2DM and MetS children against control subjects and determine which microorganisms might be potentially related with cardiometabolic risk factors to propose gut microbial biomarkers that characterize these conditions for future development of pre-diagnostic tools. RESULTS: Stool samples from 21 children with T2DM, 25 with MetS, and 20 controls (n = 66) were collected and processed to conduct 16S rDNA gene sequencing. α- and ß-diversity were studied to detect microbial differences among studied groups. Spearman correlation was used to analyze possible associations between gut microbiota and cardiometabolic risk factors, and linear discriminant analyses (LDA) were conducted to determine potential gut bacterial biomarkers. T2DM and MetS showed significant changes in their gut microbiota at genus and family level. Read relative abundance of Faecalibacterium and Oscillospora was significantly higher in MetS and an increasing trend of Prevotella and Dorea was observed from the control group towards T2DM. Positive correlations were found between Prevotella, Dorea, Faecalibacterium, and Lactobacillus with hypertension, abdominal obesity, high glucose levels, and high triglyceride levels. LDA demonstrated the relevance of studying least abundant microbial communities to find specific microbial communities that were characteristic of each studied health condition. CONCLUSIONS: Gut microbiota was different at family and genus taxonomic levels among controls, MetS, and T2DM study groups within children from 7 to 17 years old, and some communities seemed to be correlated with relevant subjects' metadata. LDA helped to find potential microbial biomarkers, providing new insights regarding pediatric gut microbiota and its possible use in the future development of gut microbiome-based predictive algorithms.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Síndrome Metabólica , Obesidade Infantil , Humanos , Criança , Adolescente , Bactérias/genética , Biomarcadores , RNA Ribossômico 16S/genética
11.
Plants (Basel) ; 12(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050060

RESUMO

Wounding induces phenolic biosynthesis in broccoli. However, there is scarce information about the physiological and molecular mechanisms governing this stress response. In the present study, a chemical-genetics approach was used to elucidate the role of reactive oxygen species (ROS), jasmonic acid (JA), and ethylene (ET) as stress-signaling molecules in the wound-induced phenolic biosynthesis in broccoli. Wounding activated the biosynthesis of ET and JA. Likewise, the wound-induced biosynthesis of ET and JA was regulated by ROS. JA activated primary metabolism, whereas the three signaling molecules activated phenylpropanoid metabolism. The signaling molecules inhibited the wound-induced activation of the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) gene, which is involved in caffeoylquinic acids biosynthesis, and the main phenolics accumulated in wounded broccoli, suggesting that an alternative caffeoylquinic biosynthesis pathway is activated in the tissue due to wounding. ROS mediated the biosynthesis of most individual phenolic compounds evaluated. In conclusion, ROS, ET, and JA are essential in activating broccoli's primary and secondary metabolism, resulting in phenolic accumulation.

12.
Nat Commun ; 14(1): 1333, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906610

RESUMO

The prototypic cancer-predisposition disease Fanconi Anemia (FA) is identified by biallelic mutations in any one of twenty-three FANC genes. Puzzlingly, inactivation of one Fanc gene alone in mice fails to faithfully model the pleiotropic human disease without additional external stress. Here we find that FA patients frequently display FANC co-mutations. Combining exemplary homozygous hypomorphic Brca2/Fancd1 and Rad51c/Fanco mutations in mice phenocopies human FA with bone marrow failure, rapid death by cancer, cellular cancer-drug hypersensitivity and severe replication instability. These grave phenotypes contrast the unremarkable phenotypes seen in mice with single gene-function inactivation, revealing an unexpected synergism between Fanc mutations. Beyond FA, breast cancer-genome analysis confirms that polygenic FANC tumor-mutations correlate with lower survival, expanding our understanding of FANC genes beyond an epistatic FA-pathway. Collectively, the data establish a polygenic replication stress concept as a testable principle, whereby co-occurrence of a distinct second gene mutation amplifies and drives endogenous replication stress, genome instability and disease.


Assuntos
Neoplasias da Mama , Anemia de Fanconi , Animais , Feminino , Humanos , Camundongos , Proteína BRCA2/genética , Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Anemia de Fanconi/genética , Genótipo , Mutação , Fenótipo
13.
Mol Ecol ; 32(8): 2022-2040, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36652554

RESUMO

One of the most important physiological challenges animals had to overcome during terrestrialization (i.e., the transition from sea to land) was water loss, which alters their osmotic and hydric homeostasis. Aquaporins are a superfamily of membrane water transporters heavily involved in osmoregulatory processes. Their diversity and evolutionary dynamics in most animal lineages remain unknown, hampering our understanding of their role in marine-terrestrial transitions. Here, we interrogated aquaporin gene repertoire evolution across the main terrestrial animal lineages. We annotated aquaporin-coding genes in genomic data from 458 species from seven animal phyla where terrestrialization episodes occurred. We then explored aquaporin gene evolutionary dynamics to assess differences between terrestrial and aquatic species through phylogenomics and phylogenetic comparative methods. Our results revealed parallel aquaporin-coding gene duplications during the ecological transition from marine to nonmarine environments (e.g., brackish, freshwater and terrestrial), rather than from aquatic to terrestrial ones, with some notable duplications in ancient lineages. In contrast, we also recovered a significantly lower number of superaquaporin genes in terrestrial arthropods, suggesting that more efficient oxygen homeostasis in land arthropods might be linked to a reduction in this type of aquaporin. Our results thus indicate that aquaporin-coding gene duplication and loss might have been one of the key steps towards the evolution of osmoregulation across animals, facilitating the "out of the sea" transition and ultimately the colonization of land.


Assuntos
Aquaporinas , Artrópodes , Animais , Filogenia , Ecossistema , Aquaporinas/genética , Água , Evolução Biológica
14.
Front Microbiol ; 13: 1037626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532453

RESUMO

Lake Cajititlán is a subtropical and endorheic lake, which is heavily impacted by nutrient pollution. Agricultural runoff and poorly treated wastewater have entered this reservoir at alarming rates during past rainy seasons, causing the cultural eutrophication of this body of water and resulting in several massive fish kill events. In this study, shotgun metagenomic sequencing was used to examine the taxonomic and functional structure of microbial communities in Lake Cajititlán during the rainy season. Several water quality features and their interactions with microbial communities were also assessed to identify the major factors affecting the water quality and biota, specifically fish species. According to current water quality regulations, most of the physicochemical variables analyzed (dissolved oxygen, pH, Secchi disk, NH4 +, NO3 -, blue-green algae, total phosphorus, and chlorophyll-a) were outside of the permissible limits. Planktothrix agardhii and Microcystis aeruginosa were the most abundant phytoplankton species, and the dominant bacterial genera were Pseudomonas, Streptomyces, and Flavobacterium, with Pseudomonas fluorescens, Stenotrophomonas maltophilia, and Aeromonas veronii representing the most abundant bacterial species. All of these microorganisms have been reported to be potentially harmful to fish, and the latter three (P. fluorescens, S. maltophilia, A. veronii) also contain genes associated with pathogenicity in fish mortality (fur, luxS, aer, act, aha, exu, lip, ser). Genetic evidence from the microbial communities analyzed herein reveals that anthropogenic sources of nutrients in the lake altered genes involved in nitrogen, phosphorus, sulfur, and carbon metabolism, mainly at the beginning of the rainy season. These findings suggest that abiotic factors influence the structure of the microbial communities, along with the major biogeochemical cycles of Lake Cajititlán, resulting in temporal variations and an excess of microorganisms that can thrive in high-nutrient and low-oxygen environments. After reviewing the literature, this appears to be the first study that focuses on characterizing the water quality of a subtropical hypereutrophic lake through associations between physicochemical variables and shotgun metagenomic data. In addition, there are few studies that have coupled the metabolism of aquatic ecosystems with nutrient cycles.

15.
Front Microbiol ; 13: 832477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479621

RESUMO

Lakes in subtropical regions are highly susceptible to eutrophication due to the heavy rainfall, which causes significant runoff of pollutants (e.g., nutrients) to reach surface waters, altering the water quality and influencing the microbial communities that regulate the biogeochemical cycles within these ecosystems. Lake Cajititlán is a shallow, subtropical, and endorheic lake in western Mexico. Nutrient pollution from agricultural activity and wastewater discharge have affected the lake's water quality, leading the reservoir to a hypereutrophic state, resulting in episodes of fish mortality during the rainy season. This study investigated the temporal dynamics of bacterial communities within Lake Cajititlán and their genes associated with the nitrogen, phosphorus, sulfur, and carbon biogeochemical cycles during the rainy season, as well as the influences of physicochemical and environmental variables on such dynamics. Significant temporal variations were observed in the composition of bacterial communities, of which Flavobacterium and Pseudomonas were the dominant genera. The climatological parameters that were most correlated with the bacterial communities and their functional profiles were pH, DO, ORP, turbidity, TN, EC, NH4 +, and NO3 -. The bacterial communities displayed variations in their functional composition for nitrogen, phosphorus, and sulfur metabolisms during the sampling months. The bacterial communities within the lake are highly susceptible to nutrient loads and low DO levels during the rainy season. Bacterial communities had a higher relative abundance of genes associated with denitrification, nitrogen fixation, assimilatory sulfate reduction, cysteine, SOX system, and all phosphorus metabolic pathways. The results obtained here enrich our understanding of the bidirectional interactions between bacterial communities and major biogeochemical processes in eutrophic subtropical lakes.

16.
J Environ Manage ; 308: 114612, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149401

RESUMO

The intensive livestock activities that are carried out worldwide to feed the growing human population have led to significant environmental problems, such as soil degradation, surface and groundwater pollution. Livestock wastewater (LW) contains high loads of organic matter, nitrogen (N) and phosphorus (P). These compounds can promote cultural eutrophication of water bodies and pose environmental and human hazards. Therefore, humanity faces an enormous challenge to adequately treat LW and avoid the overexploitation of natural resources. This can be accomplished through circular bioeconomy approaches, which aim to achieve sustainable production using biological resources, such as LW, as feedstock. Circular bioeconomy uses innovative processes to produce biomaterials and bioenergy, while lowering the consumption of virgin resources. Microalgae-based wastewater treatment (MbWT) has recently received special attention due to its low energy demand, the robust capacity of microalgae to grow under different environmental conditions and the possibility to recover and transform wastewater nutrients into highly valuable bioactive compounds. Some of the high-value products that may be obtained through MbWT are biomass and pigments for human food and animal feed, nutraceuticals, biofuels, polyunsaturated fatty acids, carotenoids, phycobiliproteins and fertilizers. This article reviews recent advances in MbWT of LW (including swine, cattle and poultry wastewater). Additionally, the most significant factors affecting nutrient removal and biomass productivity in MbWT are addressed, including: (1) microbiological aspects, such as the microalgae strain used for MbWT and the interactions between microbial populations; (2) physical parameters, such as temperature, light intensity and photoperiods; and (3) chemical parameters, such as the C/N ratio, pH and the presence of inhibitory compounds. Finally, different strategies to enhance nutrient removal and biomass productivity, such as acclimation, UV mutagenesis and multiple microalgae culture stages (including monocultures and multicultures) are discussed.


Assuntos
Poluentes Ambientais , Microalgas , Purificação da Água , Animais , Biocombustíveis , Biomassa , Bovinos , Gado , Nitrogênio , Suínos , Águas Residuárias
17.
Plants (Basel) ; 10(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34961133

RESUMO

Wounding stress is an effective strategy to induce glucosinolate (GS) biosynthesis in broccoli. However, there is insufficient knowledge on the physiological and molecular mechanisms underlying this stress response. Herein, a chemical-genetic approach was applied to elucidate the role of jasmonic acid (JA), ethylene (ET), and reactive oxygen species (ROS) on the wound-induced biosynthesis of GS. Broccoli was processed into chops to induce wounding stress. Broccoli chops were treated with phenidone (PHEN) and diphenyleneiodonium chloride (DPI) as inhibitors of JA and ROS biosynthesis, respectively, whereas 1-methylcyclopropene (1-MCP) was applied as an inhibitor of ET action. Wounding stress induced the expression of genes related to the biosynthesis of indolic and aliphatic GS, which was correlated with the accumulation of GS and modulated by the inhibitors of signaling molecules applied. Results of gene expression analysis indicated that JA played a key role in the activation of most genes, followed by ROS. Furthermore, except for the CYP79B2 gene, PHEN and 1-MCP synergistically downregulated the expression of GS biosynthetic genes evaluated, showing that the interaction between JA and ET was fundamental to modulate GS biosynthesis. Results presented herein increased our knowledge of the physiological and molecular mechanisms governing the wound-induced biosynthesis of GS in broccoli.

18.
Gut Microbes ; 13(1): 1960135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34491882

RESUMO

Childhood obesity and T2DM have shown a recent alarming increase due to important changes in global lifestyle and dietary habits, highlighting the need for urgent and novel solutions to improve global public health. Gut microbiota has been shown to be relevant in human health and its dysbiosis has been associated with MetS, a health condition linked to the onset of relevant diseases including T2DM. Even though there have been recent improvements in the understanding of gut microbiota-host interactions, pediatric gut microbiota has been poorly studied compared to adults. This review provides an overview of MetS and its relevance in school-age children, discusses gut microbiota and its possible association with this metabolic condition including relevant emerging gut microbiome-based interventions for its prevention and treatment, and outlines future challenges and perspectives in preventing microbiota dysbiosis from the early stages of life.


Assuntos
Bactérias/metabolismo , Diabetes Mellitus Tipo 2/patologia , Microbioma Gastrointestinal/fisiologia , Síndrome Metabólica/microbiologia , Obesidade Infantil/microbiologia , Bactérias/classificação , Criança , Disbiose , Comportamento Alimentar , Humanos
19.
Enferm. clín. (Ed. impr.) ; 31(2): 91-98, Mar-Abr. 2021. tab
Artigo em Espanhol | IBECS | ID: ibc-220490

RESUMO

Objetivo: Determinar la asociación de síntomas depresivos, la calidad del sueño, el estado nutricional y la velocidad de la marcha con el deterioro cognitivo de las personas de más de 60 años. Método: Estudio de corte transversal con diseño correlacional con un muestreo no probabilístico por conveniencia. La población estuvo conformada por personas mayores de 60 o más años de edad pertenecientes a centros de día para adultos mayores de un área urbana de Tamaulipas, México. Se utilizaron 3 test neuropsicológicos (Stroop, Trazos de colores e Intervalo de dígitos) la Escala de depresión geriátrica, el Índice de calidad del sueño de Pittsburgh, el Mini Nutritional Assessment y la Batería corta de desempeño. Resultados: La muestra final fue de 108 adultos mayores. En cuanto a la influencia de los factores de riesgo para predecir el deterioro cognitivo se observó un modelo significativo (F=12,914, gl=4, p≥0,001), mostrando una varianza explicada de 33,4%, donde los síntomas depresivos (β=0,205; p=0,048), el sueño (β=–0,322, p=0,001), el estado nutricional (β=–0,336, p=0,001) y la velocidad de la marcha (β=0,244, p=0,004) se asociaron con el deterioro cognitivo. Conclusiones: Niveles altos de síntomas depresivos, horas de sueño prolongadas, un estado de malnutrición y una velocidad de marcha lenta se asociaron con el deterioro cognitivo de las personas de más de 60 años, lo cual aporta conocimientos para la implementación de intervenciones dirigidas a prevenir los factores de riesgo que predicen el deterioro cognitivo para así retardar su aparición.


Objective: To determine the relationship of depressive symptoms, sleep hygiene, nutritional status and gait speed with cognitive impairment in people over 60 years. Method: Cross-sectional, correlational design with a non-probability convenience sampling. The population was made up of people over 60 years of age belonging to recreational stays in an urban area of Tamaulipas, Mexico. Criterion measures included three neuropsychological tests (Stroop Test, Trail Making Test and Digit Span Subtest) the Geriatric Depression Scale, Pittsburgh Sleep Quality Index, Mini Nutritional Assessment and the Short Physical Performance Battery. Results: The final sample was of 108 participants. Regarding the influence of risk factors to predict cognitive impairment a significant model was observed (F=12.914, gl=4, P≥.001), showing a variance explained of 33.4%, where depressive symptoms (β=.205, P=.048), sleep (β=–.322, P=.001), nutritional status (β=–.336, P=.001) and gait speed (β=.244, P=.004) were associated with cognitive impairment. Conclusions: High levels of depressive symptoms, prolonged sleep duration, a malnutrition status and a slow gait speed predict cognitive impairment of the people over 60 years, this provides knowledge for the implementation of interventions aimed at preventing the risk factors that predict cognitive decline in order to delay its appearance.(AU)


Assuntos
Humanos , Masculino , Feminino , Idoso , Estado Nutricional , Disfunção Cognitiva , Velocidade de Caminhada , Depressão , Transtornos do Sono-Vigília , Estudos Transversais , Saúde do Idoso
20.
Food Res Int ; 140: 109862, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648180

RESUMO

Low bacterial diversity in the gut has been associated with the development of several diseases. Agave sap concentrate (ASC) is obtained from the thermal treatment of the fresh sap called "aguamiel", an artisanal Mexican food. In this study, we assessed the microbial diversity from three different ASC producing regions in Mexico using high-throughput sequencing of the 16S rRNA gene and evaluated their resistance to an in vitro gastrointestinal process as well as their ability to produce short-chain fatty acids (SCFA). Seven phyla and 120 genera were detected in ASC samples; Firmicutes had the highest relative read abundance at the phylum level, whereas Bacillus was the most abundant genus. Bacterial diversity at phylum and genus levels was highly dependent on the region where ASC was produced. The microbiota from a selected sample was resistant to low pH conditions, bile salts and intestinal enzymes. Moreover, bacteria were able to survive and grow in the colonic environment. SCFA production was comparable with that observed for a well-known probiotic, Lactobacillus plantarum 299v, that was used as control. These findings demonstrate that ASC contains a bacterial ecosystem with potential probiotic benefits.


Assuntos
Agave , Microbioma Gastrointestinal , Bactérias/genética , Ácidos Graxos Voláteis , México , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...