Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Circuits Syst ; 12(2): 437-445, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29570069

RESUMO

This paper presents a novel two-wired active electrode that achieves ultrahigh input impedance using power supply bootstrapping. The proposed circuit reduces the input capacitance of a buffer amplifier while enabling measurements using leads with only two wires, providing a low-complexity and low-cost solution for interference rejection and artifact reduction in dc-coupled dry-contact biopotential measurements. An implemented prototype shows that, even using standard operational amplifiers, an input capacitance as low as 71 fF can be obtained, maintaining a high impedance in a 0-1 kHz bandwidth, sufficient for ECG, EEG, and EMG measurements. The circuit has a simple and easily replicable implementation that requires no individual adjustment. A common mode rejection ratio (CMRR) above 103 dB at 50 Hz was achieved and the increased rejection to interference due to the potential divider effect was experimentally tested maintaining a 92-dB CMRR at 50 Hz with a 1.2-M source impedance unbalance. ECG measurements were conducted to validate the active electrode against a traditional alternative, and a test with dry-contact EEG electrodes was successfully conducted. Although the proposed circuit is intended to acquire superficial electrophysiological signals using dry electrodes, it can be used for measurement from other high-impedance sources, such as micropipette electrodes.


Assuntos
Eletrodos , Eletrodiagnóstico/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Amplificadores Eletrônicos , Capacitância Elétrica , Desenho de Equipamento , Humanos
2.
IEEE Trans Biomed Circuits Syst ; 10(3): 787-95, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26841414

RESUMO

In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.


Assuntos
Eletromiografia/instrumentação , Eletrônica Médica/métodos , Amplificadores Eletrônicos , Eletrodos , Eletrônica Médica/instrumentação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...