Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thromb Res ; 209: 51-58, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34871982

RESUMO

BACKGROUND: Identifying venous thromboembolism (VTE) from large clinical and administrative databases is important for research and quality improvement. OBJECTIVE: To develop and validate natural language processing (NLP) algorithms to identify VTE from radiology reports among general internal medicine (GIM) inpatients. METHODS: This cross-sectional study included GIM hospitalizations between April 1, 2010 and March 31, 2017 at 5 hospitals in Toronto, Ontario, Canada. We developed NLP algorithms to identify pulmonary embolism (PE) and deep venous thrombosis (DVT) from radiologist reports of thoracic computed tomography (CT), extremity compression ultrasound (US), and nuclear ventilation-perfusion (VQ) scans in a training dataset of 1551 hospitalizations. We compared the accuracy of our NLP algorithms, the previously-published "simpleNLP" tool, and administrative discharge diagnosis codes (ICD-10-CA) for PE and DVT to the "gold standard" manual review in a separate random sample of 4000 GIM hospitalizations. RESULTS: Our NLP algorithms were highly accurate for identifying DVT from US, with sensitivity 0.94, positive predictive value (PPV) 0.90, and Area Under the Receiver-Operating-Characteristic Curve (AUC) 0.96; and in identifying PE from CT, with sensitivity 0.91, PPV 0.89, and AUC 0.96. Administrative diagnosis codes and the simple NLP tool were less accurate for DVT (ICD-10-CA sensitivity 0.63, PPV 0.43, AUC 0.81; simpleNLP sensitivity 0.41, PPV 0.36, AUC 0.66) and PE (ICD-10-CA sensitivity 0.83, PPV 0.70, AUC 0.91; simpleNLP sensitivity 0.89, PPV 0.62, AUC 0.92). CONCLUSIONS: Administrative diagnosis codes are unreliable in identifying VTE in hospitalized patients. We developed highly accurate NLP algorithms to identify VTE from radiology reports in a multicentre sample and have made the algorithms freely available to the academic community with a user-friendly tool (https://lks-chart.github.io/CHARTextract-docs/08-downloads/rulesets.html#venous-thromboembolism-vte-rulesets).


Assuntos
Embolia Pulmonar , Radiologia , Tromboembolia Venosa , Algoritmos , Estudos Transversais , Hospitalização , Humanos , Classificação Internacional de Doenças , Processamento de Linguagem Natural , Ontário , Embolia Pulmonar/diagnóstico por imagem , Tromboembolia Venosa/diagnóstico por imagem
2.
PLoS One ; 16(3): e0247872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33657184

RESUMO

BACKGROUND: Tuberculosis (TB) is a major cause of death worldwide. TB research draws heavily on clinical cohorts which can be generated using electronic health records (EHR), but granular information extracted from unstructured EHR data is limited. The St. Michael's Hospital TB database (SMH-TB) was established to address gaps in EHR-derived TB clinical cohorts and provide researchers and clinicians with detailed, granular data related to TB management and treatment. METHODS: We collected and validated multiple layers of EHR data from the TB outpatient clinic at St. Michael's Hospital, Toronto, Ontario, Canada to generate the SMH-TB database. SMH-TB contains structured data directly from the EHR, and variables generated using natural language processing (NLP) by extracting relevant information from free-text within clinic, radiology, and other notes. NLP performance was assessed using recall, precision and F1 score averaged across variable labels. We present characteristics of the cohort population using binomial proportions and 95% confidence intervals (CI), with and without adjusting for NLP misclassification errors. RESULTS: SMH-TB currently contains retrospective patient data spanning 2011 to 2018, for a total of 3298 patients (N = 3237 with at least 1 associated dictation). Performance of TB diagnosis and medication NLP rulesets surpasses 93% in recall, precision and F1 metrics, indicating good generalizability. We estimated 20% (95% CI: 18.4-21.2%) were diagnosed with active TB and 46% (95% CI: 43.8-47.2%) were diagnosed with latent TB. After adjusting for potential misclassification, the proportion of patients diagnosed with active and latent TB was 18% (95% CI: 16.8-19.7%) and 40% (95% CI: 37.8-41.6%) respectively. CONCLUSION: SMH-TB is a unique database that includes a breadth of structured data derived from structured and unstructured EHR data by using NLP rulesets. The data are available for a variety of research applications, such as clinical epidemiology, quality improvement and mathematical modeling studies.


Assuntos
Registros Eletrônicos de Saúde , Processamento de Linguagem Natural , Tuberculose/epidemiologia , Bases de Dados Factuais , Feminino , Hospitais , Humanos , Armazenamento e Recuperação da Informação , Masculino , Ontário/epidemiologia , Estudos Retrospectivos , Tuberculose/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...