Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 203: 108074, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37832367

RESUMO

The Pepper huasteco yellow vein virus (PHYVV) is an endemic geminivirus in Mexico causing partial or total losses in the pepper crop since the damage caused by the virus has not been fully controlled. In this work, we evaluated the effect of ZnO NPs (0, 50, 100, 150, and 200 mM) as a preventive (72 h before) and curative (72 h after) treatment of PHYVV infection in two jalapeño pepper varieties. In this study, we observed a decrease in symptoms, and it could be caused by an induction of the defense system in pepper plants and a direct action on PHYVV by foliar application of ZnO NPs. Our findings suggest that ZnO NP application significantly decreased the viral titer for both varieties at 200 mM by 15.11-fold. However, this effect was different depending on the timing of application and the variety of pepper. The greatest decrease in the viral titer in the preventive treatment in both varieties was at the concentration of 200 mM (1781.17 and 274.5 times, respectively). For curative treatment in cv. Don Pancho at the concentration of 200 mM (333.33 times) and cv. Don Benito at 100 mM (43.10 folds). compared to control. Furthermore, virus mobility was generally restricted for both varieties at 100 mM (15.13-fold) compared to the control. The results possibly delineated that ZnO NPs increased plant resistance possibly by increasing POD (2.08 and 0.25 times) and SOD (0.998 and 1.38) in cv. Don Pancho and cv. Don Benito, respectively. On the other hand, in cv. Don Pancho and cv. Don Benito presented a decrease in CAT (0.61 and 0.058) and PAL (0.78 and 0.77), respectively. Taken together, we provide the first evidence to demonstrate the effect of ZnO NPs on viral symptoms depending on the plan-virus-ZnO NP interaction.


Assuntos
Begomovirus , Capsicum , Geminiviridae , Óxido de Zinco , Óxido de Zinco/farmacologia , Geminiviridae/fisiologia , Plantas
3.
Biology (Basel) ; 12(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37508394

RESUMO

Common bean (Phaseolus vulgaris L.) is an important crop for food security and for national economics for several countries worldwide. One of the most important factors of risk in common bean production is the fungal disease anthracnose caused by Colletotrichum lindemuthianum, which, in some cases, causes complete yield losses; this kind of plant disease is usually managed through the application of chemical products such as fungicides that are commonly not accepted by society. This rejection is based on the relationship of pesticides with health damage and environmental contamination. In order to help in solving these drawbacks, the present work proposes the use of electrochemically activated salt solutions (EASSs) as a safer pathogen control agent in crops, due to it having shown an elicitor and biostimulant effect on plants. With this background, this manuscript presents in vitro results of the evaluation of the inhibitory effect for multiple bean pathogens and in vivo results of EASS in the common bean-Colletotrichum pathosystem by evaluation of the infection severity and defense activation, such as secondary metabolite production and antioxidant activity. EASS presence in growth media had a strong inhibitory effect at the beginning of experiments for some of the evaluated fungi. EASSs showed an effect against the development of the disease when applied in specific doses to prevent distress in plants.

4.
Plants (Basel) ; 12(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36987015

RESUMO

Agriculture in the current century is seeking sustainable tools in order to generate plant production systems with minimal negative environmental impact. In recent years it has been shown that the use of insect frass is an option to be used for this purpose. The present work studied the effect of low doses (0.1, 0.5, and 1.0% w/w) of cricket frass (Acheta domesticus) in the substrate during the cultivation of tomatos under greenhouse conditions. Plant performance and antioxidant enzymatic activities were measured in the study as explicative variables related to plant stress responses in order to determine possible biostimulant or elicitor effects of cricket frass treatments during tomato cultivation under greenhouse conditions. The main findings of this study indicated that tomato plants responded in a dose dependent manner to cricket frass treatments, recalling the hormesis phenomenon. On the one hand, a 0.1% (w/w) cricket frass treatment showed typical biostimulant features, while on the other hand, 0.5 and 1.0% treatments displayed elicitor effects in tomato plants under evaluated conditions in the present study. These results support the possibility that low doses of cricket frass might be used in tomato cultivation (and perhaps in other crops) for biostimulant/elicitor input into sustainable production systems.

5.
Molecules ; 27(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235125

RESUMO

The estrogenic receptor beta (ERß) protects against carcinogenesis by stimulating apoptosis. Bisphenol A (BPA) is related to promoting cancer, and naringenin has chemoprotective activities both can bind to ERß. Naringenin in the colon is metabolized by the microbiota. Cancer involves genetic and epigenetic mechanisms, including miRNAs. The objective of the present study was to evaluate the co-exposure effect of colonic in vitro fermented extract of naringenin (FEN) and BPA, to elucidate molecular effects in HT-29 colon cancer cell line. For this, we quantified genes related to the p53 signaling pathway as well as ERß, miR-200c, and miR-141. As an important result, naringenin (IC50 250 µM) and FEN (IC50 37%) promoted intrinsic pathways of apoptosis through phosphatase and tensin homolog (PTEN) (+2.70, +1.72-fold, respectively) and CASP9 (+3.99, +2.03-fold, respectively) expression. BPA decreased the expression of PTEN (-3.46-fold) gene regulated by miR-200. We suggest that once co-exposed, cells undergo a greater stress forcing them to mediate other extrinsic apoptosis mechanisms associated with death domain FASL. In turn, these findings are related to the increase of ERß (5.3-fold with naringenin and 13.67-fold with FEN) gene expression, important in the inhibition of carcinogenic development.


Assuntos
Neoplasias do Colo , MicroRNAs , Compostos Benzidrílicos , Proliferação de Células , Neoplasias do Colo/genética , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Fermentação , Flavanonas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fenóis , Transdução de Sinais , Tensinas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Sensors (Basel) ; 22(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890954

RESUMO

Photosynthesis is a vital process for the planet. Its estimation involves the measurement of different variables and its processing through a mathematical model. This article presents a black-box mathematical model to estimate the net photosynthesis and its digital implementation. The model uses variables such as: leaf temperature, relative leaf humidity, and incident radiation. The model was elaborated with obtained data from Capsicum annuum L. plants and calibrated using genetic algorithms. The model was validated with Capsicum annuum L. and Capsicum chinense Jacq. plants, achieving average errors of 3% in Capsicum annuum L. and 18.4% in Capsicum chinense Jacq. The error in Capsicum chinense Jacq. was due to the different experimental conditions. According to evaluation, all correlation coefficients (Rho) are greater than 0.98, resulting from the comparison with the LI-COR Li-6800 equipment. The digital implementation consists of an FPGA for data acquisition and processing, as well as a Raspberry Pi for IoT and in situ interfaces; thus, generating a useful net photosynthesis device with non-invasive sensors. This proposal presents an innovative, portable, and low-scale way to estimate the photosynthetic process in vivo, in situ, and in vitro, using non-invasive techniques.


Assuntos
Capsicum , Modelos Teóricos , Fotossíntese , Folhas de Planta
7.
Plants (Basel) ; 11(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406912

RESUMO

Precision agriculture has the objective of improving agricultural yields and minimizing costs by assisting management with the use of sensors, remote sensing, and information technologies. There are several approaches to improving crop yields where remote sensing has proven to be an important methodology to determine agricultural maps to show surface differences which may be associated with many phenomena. Remote sensing utilizes a wide variety of image sensors that range from common RGB cameras to sophisticated, hyper-spectral image cameras which acquire images from outside the visible electromagnetic spectrum. The NDVI and NGBVI are computer vision vegetation index algorithms that perform operations from color masks such as red, green, and blue from RGB cameras and hyper-spectral masks such as near-infrared (NIR) to highlight surface differences in the image to detect crop anomalies. The aim of the present study was to determine the relationship of NDVI and NGBVI as plant health indicators in tomato plants (Solanum lycopersicum) treated with the beneficial bacteria Bacillus cereus-Amazcala (B. c-A) as a protective agent to cope with Clavibacter michiganensis subsp. michiganensis (Cmm) infections. The results showed that in the presence of B. c-A after infection with Cmm, NDVI and NGBVI can be used as markers of plant weight and the activation of the enzymatic activities related to plant defense induction.

8.
Plants (Basel) ; 11(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35406950

RESUMO

Plant stress is one of the most significant factors affecting plant fitness and, consequently, food production. However, plant stress may also be profitable since it behaves hormetically; at low doses, it stimulates positive traits in crops, such as the synthesis of specialized metabolites and additional stress tolerance. The controlled exposure of crops to low doses of stressors is therefore called hormesis management, and it is a promising method to increase crop productivity and quality. Nevertheless, hormesis management has severe limitations derived from the complexity of plant physiological responses to stress. Many technological advances assist plant stress science in overcoming such limitations, which results in extensive datasets originating from the multiple layers of the plant defensive response. For that reason, artificial intelligence tools, particularly Machine Learning (ML) and Deep Learning (DL), have become crucial for processing and interpreting data to accurately model plant stress responses such as genomic variation, gene and protein expression, and metabolite biosynthesis. In this review, we discuss the most recent ML and DL applications in plant stress science, focusing on their potential for improving the development of hormesis management protocols.

9.
Front Plant Sci ; 13: 796393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310627

RESUMO

Blackberry fruits are appreciated as a source of nutrients and compounds related to benefit human health. However, they are highly perishable and very susceptible to decay factors. Current methods to improve and maintain blackberry quality are limited in use because of the fruit's fragile physical properties. Regarding these properties, it has been reported that the activities of certain enzymes are linked to senescence and fruit softening processes. This study was aimed to assess the effect of salicylic acid (SA) and chitosan (COS) as preharvest treatments on the physiology related to improving fruit conservation and preserving the marketability index of blackberry fruit. The preharvest treatments were foliar sprayed on blackberry plants at different concentrations. The activities of enzymes superoxide dismutase (SOD), catalase (CAT), phenylalanine ammonia-lyase (PAL), and polygalacturonase (PG) were measured. Total soluble solids (TSS), titratable acidity (TA), TSS/TA ratio, and marketability index (MI) were analyzed after 144 h of storage. The application of 3 mM of SA and 0.25% of COS treatments preserved the MI of blackberries by reducing leakage, red drupelet reversion (RDR), and mycelium presence in the fruit. SA application increased SOD, CAT, and PAL activities. Our results also showed that SA and COS preharvest treatments modified the activity of the cell wall degrading enzyme PG, which might play a role in improving the shelf life and resistance to decay factors of blackberry fruit without any significant effects on physicochemical properties like TSS, TA, and the TSS/TA ratio.

10.
Biology (Basel) ; 10(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681122

RESUMO

Agricultural systems face several challenges in terms of meeting everyday-growing quantities and qualities of food requirements. However, the ecological and social trade-offs for increasing agricultural production are high, therefore, more sustainable agricultural practices are desired. Researchers are currently working on diverse sustainable techniques based mostly on natural mechanisms that plants have developed along with their evolution. Here, we discuss the potential agricultural application of extracellular DNA (eDNA), its multiple functioning mechanisms in plant metabolism, the importance of hormetic curves establishment, and as a challenge: the technical limitations of the industrial scale for this technology. We highlight the more viable natural mechanisms in which eDNA affects plant metabolism, acting as a damage/microbe-associated molecular pattern (DAMP, MAMP) or as a general plant biostimulant. Finally, we suggest a whole sustainable system, where DNA is extracted from organic sources by a simple methodology to fulfill the molecular characteristics needed to be applied in crop production systems, allowing the reduction in, or perhaps the total removal of, chemical pesticides, fertilizers, and insecticides application.

11.
Plant Physiol Biochem ; 165: 251-264, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34082331

RESUMO

At specific vibration frequencies like ones generated by insects such as caterpillar chewing and bee's buzz-pollination turn on the plants secondary metabolism and their respective pathways gets activated. Thus, studies report that vibrations and sound waves applied to plants improves their fitness performance. Commonly, acoustic treatments for plants have used arbitrarily random frequencies. In this work, a group of signals obtained from hydric-stressed plants was recorded as vibrational patterns using a laser vibrometer. These vibration-signals were classified as representative of each condition and then externally applied as Acoustic Emission Patterns (AEP). The present research hypothesized that specific vibration frequencies could "emulate" a plant signal through mechanical energy based on tplant's ability to recognize vibration pattern similarity to a hydric status. This investigation aimed to apply the AEP's as characteristic vibrations classified as Low hydric stress (LHS), medium hydric stress (MHS), and high hydric stress (HHS) to evaluate their effect on healthy-well watered plants at two developmental stages. In the vegetative stage, the gene expression related to antioxidant and hydric stress responses was assessed. The LHS, MHS, and HHS acoustic treatments up-regulated the peroxidase (Pod) (~2.8, 1.9, and 3.6-fold change, respectively). The superoxide dismutase (Mn-sod) and phenylalanine ammonia-lyase (Pal) genes were up-regulated by HHS (~0.23 and ~0.55-fold change, respectively) and, the chalcone synthase (Chs) gene was induced by MHS (~0.63-fold-change). At the fructification stage, the MHS treatment induced a significant increase in Capsaicin content (5.88-fold change), probably through the at3and kas gene activation. Findings are correlated for a better understanding of plant responses to different multi frequency-signals tones from vibrations with potential for agricultural applications.


Assuntos
Capsicum , Acústica , Animais , Capsicum/genética , Peroxidases , Fenilalanina Amônia-Liase , Água
12.
Plants (Basel) ; 10(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803105

RESUMO

The need to produce food in a sustainable way to counteract the effects of excessive use of agrochemicals opens the door to the generation of new technologies that are not based on fossil fuels and are less toxic to ecosystems. Plant growth-promoting bacteria (PGPB) could represent an alternative to chemical biofertilizers and pesticides offering protection for biotic and abiotic stresses. In this work, a bacterial isolate from roots of castor bean (Ricinus communis) was identified and named as Bacillus cereus strain "Amazcala" (B.c-A). This isolate displayed the ability to solubilize inorganic phosphate and produce gibberellic acid (GA3). Moreover, this bacterium provided significant increases in height, stem width, dry weight, and total chlorophyll content in tomato plants. Interestingly, B.c-A also significantly decreased the severity of bacterial canker disease on tomato caused by Clavibacter michiganensis (Cmm) in preventive disease assays under greenhouse conditions. Based on our results, B.c-A can be considered as PGPB and a useful tool in Cmm disease control on tomato plant under greenhouse conditions.

13.
Environ Sci Pollut Res Int ; 28(28): 37130-37141, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33710485

RESUMO

Nowadays, the use of different nanoscale structures has been introduced to a large number of research areas. One of these is the treatment and remediation of water through photocatalytic processes, seeking to reuse wastewater for agriculture. In this paper, Lactuca sativa, Coriandrum sativum, and Capsicum annuum were used as crop models to observe the effects in plant growth and the secondary metabolism of different water qualities and types used in the watering process. Initial results show that the photocatalytic process's water maintains a pH and ion concentration within the allowed limits, significantly reducing the number of bacteria. Along the growth process, an influence on germination times, appearance of true leaves, maturation, and fruit production depending on the type of water used is observed, obtaining the best results in both growth times and quantity of fruits, for the 50% and 70% disinfected water/tap water (DW/TAW) study groups. Secondary metabolites, such as phenols, flavonoids, and antioxidant activity, were studied to evaluate changes in the vegetables' composition, showing increased concentration for the disinfected water groups in most specimens. Additionally, no traces of metals and microorganisms were detected, concluding that the crops are viable to be consumed by human beings.


Assuntos
Capsicum , Coriandrum , Nanopartículas , Humanos , Lactuca , Prata , Titânio , Água
14.
Plant Signal Behav ; 15(7): 1770489, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32490712

RESUMO

Plants that experience a lack of sufficient irrigation undergo hydric stress, which causes the modification of their mechanical properties. These changes include a complex network of chemical and physical signals that interact between plant-plant and plant-environment systems in a mechanism that is still not well understood, and that differs among species. This mechanical response implies different levels of vibration when the plant experiences structural modifications from self-hydraulic adjustments of flux exchange at specific frequencies, with these carrying behavioral information. To measure these signals, highly sensitive instrumentation that allows the decoding of displacement velocity and displacement of plants, which is possible through calibrated equipment such as 3D scanning laser vibrometers, is necessary. Laser vibrometry technology allows for noninvasive measurements in real-time. Physiological changes could reasonably affect the biomechanical condition of plants in terms of the frequency (hertz) and intensity of the plant's vibration. In this research, it is proposed that the frequency changes of a plant's vibration are related to the plant's hydric condition and that these frequency vibrations have the ecological potential to communicate water changes and levels of hydric stress. The peak of the velocity of plant displacements was found to vary from 0.079 to 1.74 mm/s, and natural frequencies (hertz) range is between 1.8 and 2.6 Hz for plants with low hydric stress (LHS), between 1.3 and 1.6 Hz for plants with medium hydric stress (MHS), and between 6.7 and 7.8 Hz for plants with high hydric stress. These values could act as preliminary references for water management using noninvasive techniques and, knowledge of the range of natural frequencies of hydric stress risk in chili pepper crops can be applied in precision agriculture practices.


Assuntos
Capsicum/fisiologia , Biofísica , Desidratação , Vibração
15.
Physiol Mol Biol Plants ; 26(1): 3-13, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32158116

RESUMO

Transgenic tobacco (N. tabacum cv. Xanthi nc) expressing Capsicum chinense CchGLP gene that encodes an Mn-SOD, constitutively produces hydrogen peroxide that increase endogenous ROS levels. Previous studies using these plants against geminivirus infections as well as drought stress confirmed that CchGLP expression conferred resistance against biotic and abiotic stresses. Cadmium (Cd) and Aluminium (Al) contamination in soils are a major ecological concern since they are two of the most widespread toxic elements in terrestrial environments. Trying to explore additional possible tolerance to another stresses in these plants, the aim of this work was to analyse the response to cadmium and aluminium salts during germination and early stages of plantlet development and a differential transcriptome of microRNAs (miRNAs) expression in expressing CchGLP transgenic lines and an azygote non-CchGLP expressing line. Plants were grown in vitro with addition of CdCl2 and AlCl3 at three different concentrations: 100, 300 and 500 µM and 50, 150 and 300 µM, respectively. The results showed higher tolerance to Cd and Al salts evaluated in two CchGLP-expressing transgenic lines L8 and L26 in comparison with the azygous non-CchGLP expressing line L1. Interestingly, L8 under Al stress presented vigorous roots and development of radicular hairs in comparison with azygous control (L1). Differentially expressed miRNAs in the comparison between L8 and L1 were associated with up and down-regulation of target genes related with structural molecule activity and ribosome constituents, as well as down-regulation in proton-transporting V-type ATPase (Vacuolar ATPase or V-ATPase). Moreover, KEGG analysis of the target genes for the differentially expressed miRNAs, led to identification of genes related with metabolic pathways and biosynthesis of secondary metabolites. One possible explanation of the tolerance to Cd and Al displayed in the transgenic tobaccos evaluated, might involve the fact that several down-regulated miRNAs, were found associated with target genes expressing V-ATPase. Specifically, miR7904-5p was down regulated and related with the up-regulation of one V-ATPase. The expression levels of these genes was confirmed by qRT-PCR assays, thus suggesting that a cation transport activity driven by the V-ATPases-dependent proton motive force, might significantly contribute as one mechanism for Cd and Al detoxification by vacuolar compartmentation in these transgenic tobacco plants.

16.
Front Plant Sci ; 11: 581891, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510742

RESUMO

Chili pepper (Capsicum annuum L.) production is affected by wilt and root rot, the most devastating disease caused by the pathogen complex of oomycete Phytophthora capsici Leon and the fungi Fusarium oxysporum Schlecht and Rhizoctonia solani Kühn, infecting roots, stems, leaves, and fruits. Fungicides are currently inefficient against this disease and have a high environmental impact. The use of elicitors is a sustainable alternative for inducing resistance to wilting and root rot. DNA fragments of an organism's own origin (conspecific or self-DNA) have shown the ability to inhibit growth and activate defense mechanisms in some plant species. In this investigation, the effect of the fragmented DNA mixture of Phytophthora capsici L., Fusarium oxysporum S., and Rhizoctonia solani K. on the protection against wilt and root rot of Capsicum annuum L. plants was evaluated. Changes in plant performance, phenolics, and flavonoids contents, as well as gene expression involved in the production of defense metabolites after the fragmented and unfragmented DNA mixture in three concentrations (20, 60, and 100 µg mL-1) in chili peppers, were studied. The results obtained showed a decrease in plant height in 60 and 100 µg mL-1 concentrations in absence of pathogens. Moreover, the treatment with fragmented DNA 100 µg mL-1 showed significant increase in the content of phenolic compounds and total flavonoids as well as gene expression associated to plant defense in comparison with control plants. Interestingly, foliar application of DNA fragments of the pathogen complex to a concentration of 100 µg mL-1 caused a 40% decrease in the mortality of infected plants with the pathogens at 30 days post-inoculation compared with control plants inoculated with the pathogen complex but not sprayed with DNA fragments. These results suggested a perspective for application of fragmented DNA of these pathogens at the agricultural level in crop protection strategies to cope with wilt and root rot in Capsicum.

17.
Mar Drugs ; 17(7)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277227

RESUMO

Coral bleaching caused by global warming has resulted in massive damage to coral reefs worldwide. Studies addressing the consequences of elevated temperature have focused on organisms of the class Anthozoa, and up to now, there is little information regarding the mechanisms by which reef forming Hydrozoans face thermal stress. In this study, we carried out a comparative analysis of the soluble proteome and the cytolytic activity of unbleached and bleached Millepora complanata ("fire coral") that inhabited reef colonies exposed to the 2015-2016 El Niño-Southern Oscillation in the Mexican Caribbean. A differential proteomic response involving proteins implicated in key cellular processes, such as glycolysis, DNA repair, stress response, calcium homeostasis, exocytosis, and cytoskeleton organization was found in bleached hydrocorals. Four of the proteins, whose levels increased in bleached specimens, displayed sequence similarity to a phospholipase A2, an astacin-like metalloprotease, and two pore forming toxins. However, a protein, which displayed sequence similarity to a calcium-independent phospholipase A2, showed lower levels in bleached cnidarians. Accordingly, the hemolytic effect of the soluble proteome of bleached hydrocorals was significantly higher, whereas the phospholipase A2 activity was significantly reduced. Our results suggest that bleached M. complanata is capable of increasing its toxins production in order to balance the lack of nutrients supplied by its symbionts.


Assuntos
Antozoários/metabolismo , Proteoma/metabolismo , Animais , Região do Caribe , Recifes de Corais , Ecossistema , Monitoramento Ambiental/métodos , Hidrozoários/metabolismo , Fosfolipases A2/metabolismo , Proteômica/métodos
18.
Rev. medica electron ; 39(5): 1153-1159, set.-oct. 2017.
Artigo em Espanhol | CUMED, LILACS | ID: biblio-1127720

RESUMO

La estevia [Stevia rebaudiana (Bertoni)] es un arbusto de tipo perenne de la familia de las Asteraceas que crece en áreas tropicales y subtropicales de Suramérica. Hoy en día, su cultivo se ha extendido a otras regiones del mundo, incluyendo Canadá y algunas partes de Asia, Europa y México, donde sus hojas se han utilizado tradicionalmente como edulcorante natural durante cientos de años. En la actualidad, el uso potencial y las implicaciones prácticas de la estevia como un edulcorante se muestran en una serie de alimentos procesados, ya que contiene glucósidos de esteviol como ingrediente activo, que puede ser bajo o no calórico, y hasta 100-300 veces más dulce que la sacarosa. Además, las hojas secas de estevia contienen también minerales, vitaminas, compuestos fenólicos, flavonoides y otros compuestos antioxidantes, con propiedades antimicrobianas y antioxidantes. Stevia acumula hasta un 30 % de los glucósidos de esteviol (SGs por su sigla en inglés) del peso seco de las hojas. El esteviósido y el rebaudiósido A son las principales SGs. Desde diciembre de 2011, los SGs (E 960) se han autorizado como aditivo alimentario y edulcorante en Estados Unidos. Su uso en diversas categorías de alimentos está regulado como por ejemplo en suplementos alimenticios y alimentos dietéticos para propósitos médicos especiales y control de peso. Sin embargo, la información ofrecida al consumidor es engañosa y dista de ser confiable. Este artículo ofrece al público interesado, datos que deben de ser evaluados al comprar productos adicionados con estevia (AU).


Stevia [Stevia rebaudiana (Bertoni)] is a perennial shrub belonging to the Asteraceae family that grows in tropical and subtropical areas of South America. Today its cultivation has spread to other regions of the world, including Canada and some parts of Asia, Europe and México, where its leaves have been used traditionally as a natural sweetener for hundreds of years. Nowadays, the potential use and practical implications of Stevia as a sweetener are shown in a number of processed foods, because it contains steviol-glycosides, which are low- or non-caloric ingredients, up to 100­300 times sweeter than sucrose. In addition, dry Stevia leaves also contain minerals, vitamins, phenolic compounds, flavonoids and other antioxidant compounds, with antimicrobial and antioxidant properties. Stevia accumulates up to 30% of diterpenoid steviol glycosides (SGs) of the leaf dry weight. Stevioside and rebaudioside A are the major SGs. Since December 2011, SGs (E 960) have been permitted for use as food additive and a sweetener in the United States. Its use in various food categories is regulated, e.g. food supplements and dietary foods for special medical purposes and weight control. However, the information offered to the consumers is misleading and far from reliable. This article offers the interested public, data that should be evaluated when buying products added with Stevia (AU).


Assuntos
Humanos , Masculino , Feminino , Stevia/classificação , Glucosídeos/administração & dosagem , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem , Comentário , Obesidade/complicações , Obesidade/prevenção & controle
19.
Rev. medica electron ; 39(5): 1153-1159, set.-oct. 2017.
Artigo em Espanhol | CUMED | ID: cum-77055

RESUMO

La estevia [Stevia rebaudiana (Bertoni)] es un arbusto de tipo perenne de la familia de las Asteraceas que crece en áreas tropicales y subtropicales de Suramérica. Hoy en día, su cultivo se ha extendido a otras regiones del mundo, incluyendo Canadá y algunas partes de Asia, Europa y México, donde sus hojas se han utilizado tradicionalmente como edulcorante natural durante cientos de años. En la actualidad, el uso potencial y las implicaciones prácticas de la estevia como un edulcorante se muestran en una serie de alimentos procesados, ya que contiene glucósidos de esteviol como ingrediente activo, que puede ser bajo o no calórico, y hasta 100-300 veces más dulce que la sacarosa. Además, las hojas secas de estevia contienen también minerales, vitaminas, compuestos fenólicos, flavonoides y otros compuestos antioxidantes, con propiedades antimicrobianas y antioxidantes. Stevia acumula hasta un 30 % de los glucósidos de esteviol (SGs por su sigla en inglés) del peso seco de las hojas. El esteviósido y el rebaudiósido A son las principales SGs. Desde diciembre de 2011, los SGs (E 960) se han autorizado como aditivo alimentario y edulcorante en Estados Unidos. Su uso en diversas categorías de alimentos está regulado como por ejemplo en suplementos alimenticios y alimentos dietéticos para propósitos médicos especiales y control de peso. Sin embargo, la información ofrecida al consumidor es engañosa y dista de ser confiable. Este artículo ofrece al público interesado, datos que deben de ser evaluados al comprar productos adicionados con estevia (AU).


Stevia [Stevia rebaudiana (Bertoni)] is a perennial shrub belonging to the Asteraceae family that grows in tropical and subtropical areas of South America. Today its cultivation has spread to other regions of the world, including Canada and some parts of Asia, Europe and México, where its leaves have been used traditionally as a natural sweetener for hundreds of years. Nowadays, the potential use and practical implications of Stevia as a sweetener are shown in a number of processed foods, because it contains steviol-glycosides, which are low- or non-caloric ingredients, up to 100­300 times sweeter than sucrose. In addition, dry Stevia leaves also contain minerals, vitamins, phenolic compounds, flavonoids and other antioxidant compounds, with antimicrobial and antioxidant properties. Stevia accumulates up to 30% of diterpenoid steviol glycosides (SGs) of the leaf dry weight. Stevioside and rebaudioside A are the major SGs. Since December 2011, SGs (E 960) have been permitted for use as food additive and a sweetener in the United States. Its use in various food categories is regulated, e.g. food supplements and dietary foods for special medical purposes and weight control. However, the information offered to the consumers is misleading and far from reliable. This article offers the interested public, data that should be evaluated when buying products added with Stevia (AU).


Assuntos
Humanos , Masculino , Feminino , Stevia/classificação , Glucosídeos/administração & dosagem , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem , Comentário , Obesidade/complicações , Obesidade/prevenção & controle
20.
Viruses ; 4(9): 1792-801, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23170183

RESUMO

The Geminiviruses genome is a small, single strand DNA that replicates in the plant cell nucleus. Analogous to animal DNA viruses, Geminiviruses depend on the host replication machinery to amplify their genomes and only supply the factors required to initiate their replication. Consequently, Geminiviruses remove the cell-cycle arrest and induce the host replication machinery using an endocycle process. They encode proteins, such as the conserved replication-associated proteins (Rep) that interact with retinoblastoma-like proteins in plants and alter the cell division cycle in yeasts. Therefore, the aim of this work is to analyze the impact of Pepper Golden Mosaic Virus (PepGMV) Rep protein in mammalian cells. Results indicate that the pTracer-SV40:Rep construction obtained in this work can be used to analyze the Rep protein effect in mammalian cells in order to compare the cell cycle regulation mechanisms in plants and animals.


Assuntos
Begomovirus/patogenicidade , Proteínas Virais/metabolismo , Replicação Viral , Animais , Ciclo Celular , Linhagem Celular , Fibroblastos/virologia , Camundongos , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...