Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Struct Funct ; 225(9): 2841-2855, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33124674

RESUMO

Semilunar granule cells (SGCs) have been proposed as a morpho-functionally distinct class of hippocampal dentate projection neurons contributing to feedback inhibition and memory processing in juvenile rats. However, the structural and physiological features that can reliably classify granule cells (GCs) from SGCs through postnatal development remain unresolved. Focusing on postnatal days 11-13, 28-42, and > 120, corresponding with human infancy, adolescence, and adulthood, we examined the somato-dendritic morphology and inhibitory regulation in SGCs and GCs to determine the cell-type specific features. Unsupervised cluster analysis confirmed that morphological features reliably distinguish SGCs from GCs irrespective of animal age. SGCs maintain higher spontaneous inhibitory postsynaptic current (sIPSC) frequency than GCs from infancy through adulthood. Although sIPSC frequency in SGCs was particularly enhanced during adolescence, sIPSC amplitude and cumulative charge transfer declined from infancy to adulthood and were not different between GCs and SGCs. Extrasynaptic GABA current amplitude peaked in adolescence in both cell types and was significantly greater in SGCs than in GCs only during adolescence. Although GC input resistance was higher than in SGCs during infancy and adolescence, input resistance decreased with developmental age in GCs, while it progressively increased in SGCs. Consequently, GCs' input resistance was significantly lower than SGCs in adults. The data delineate the structural features that can reliably distinguish GCs from SGCs through development. The results reveal developmental differences in passive membrane properties and steady-state inhibition between GCs and SGCs which could confound their use in classifying the cell types.


Assuntos
Dendritos , Giro Denteado/citologia , Giro Denteado/crescimento & desenvolvimento , Inibição Neural , Neurônios/citologia , Neurônios/fisiologia , Animais , Potenciais Pós-Sinápticos Inibidores , Masculino , Ratos Wistar
2.
Brain Behav Immun ; 88: 381-395, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32259563

RESUMO

The mechanisms by which the neurophysiological and inflammatory responses to brain injury contribute to memory impairments are not fully understood. Recently, we reported that the innate immune receptor, toll-like receptor 4 (TLR4) enhances AMPA receptor (AMPAR) currents and excitability in the dentate gyrus after fluid percussion brain injury (FPI) while limiting excitability in controls. Here, we examine the cellular mediators underlying TLR4 regulation of dentate excitability and its impact on memory performance. In ex vivo slices, astrocytic and microglial metabolic inhibitors selectively abolished TLR4 antagonist modulation of excitability in controls, but not in rats after FPI, demonstrating that glial signaling contributes to TLR4 regulation of excitability in controls. In glia-depleted neuronal cultures from naïve mice, TLR4 ligands bidirectionally modulated AMPAR charge transfer consistent with neuronal TLR4 regulation of excitability, as observed after brain injury. In vivo TLR4 antagonism reduced early post-injury increases in mediators of MyD88-dependent and independent TLR4 signaling without altering expression in controls. Blocking TNFα, a downstream effector of TLR4, mimicked effects of TLR4 antagonist and occluded TLR4 agonist modulation of excitability in slices from both control and FPI rats. Functionally, transiently blocking TLR4 in vivo improved impairments in working memory observed one week and one month after FPI, while the same treatment impaired memory function in uninjured controls. Together these data identify that distinct cellular signaling mechanisms converge on TNFα to mediate TLR4 modulation of network excitability in the uninjured and injured brain and demonstrate a role for TLR4 in regulation of working memory function.


Assuntos
Lesões Encefálicas , Receptor 4 Toll-Like , Animais , Memória de Curto Prazo , Camundongos , Neurônios/metabolismo , Ratos , Receptores de AMPA , Receptor 4 Toll-Like/metabolismo
3.
Ann Neurol ; 87(4): 497-515, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32031699

RESUMO

OBJECTIVE: Traumatic brain injury is a major risk factor for acquired epilepsies, and understanding the mechanisms underlying the early pathophysiology could yield viable therapeutic targets. Growing evidence indicates a role for inflammatory signaling in modifying neuronal excitability and promoting epileptogenesis. Here we examined the effect of innate immune receptor Toll-like receptor 4 (TLR4) on excitability of the hippocampal dentate gyrus and epileptogenesis after brain injury. METHODS: Slice and in vivo electrophysiology and Western blots were conducted in rats subject to fluid percussion brain injury or sham injury. RESULTS: The studies identify that TLR4 signaling in neurons augments dentate granule cell calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (CP-AMPAR) currents after brain injury. Blocking TLR4 signaling in vivo shortly after brain injury reduced dentate network excitability and seizure susceptibility. When blocking of TLR4 signaling after injury was delayed, however, this treatment failed to reduce postinjury seizure susceptibility. Furthermore, TLR4 signal blocking was less efficacious in limiting seizure susceptibility when AMPAR currents, downstream targets of TLR4 signaling, were transiently enhanced. Paradoxically, blocking TLR4 signaling augmented both network excitability and seizure susceptibility in uninjured controls. Despite the differential effect on seizure susceptibility, TLR4 antagonism suppressed cellular inflammatory responses after injury without impacting sham controls. INTERPRETATION: These findings demonstrate that independently of glia, the immune receptor TLR4 directly regulates post-traumatic neuronal excitability. Moreover, the TLR4-dependent early increase in dentate excitability is causally associated with epileptogenesis. Identification and selective targeting of the mechanisms underlying the aberrant TLR4-mediated increase in CP-AMPAR signaling after injury may prevent epileptogenesis after brain trauma. ANN NEUROL 2020;87:497-515.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Giro Denteado/metabolismo , Epilepsia/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Western Blotting , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Cálcio/metabolismo , Giro Denteado/citologia , Eletroencefalografia , Epilepsia/etiologia , Epilepsia/fisiopatologia , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Técnicas de Patch-Clamp , Cultura Primária de Células , Ratos , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores
4.
Mol Ther ; 25(7): 1531-1543, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28456380

RESUMO

We have investigated delivery of protein therapeutics from the bloodstream into the brain using a mouse model of late-infantile neuronal ceroid lipofuscinosis (LINCL), a lysosomal disease due to deficiencies in tripeptidyl peptidase 1 (TPP1). Supraphysiological levels of TPP1 are delivered to the mouse brain by acute intravenous injection when co-administered with K16ApoE, a peptide that in trans mediates passage across the blood-brain barrier (BBB). Chronic treatment of LINCL mice with TPP1 and K16ApoE extended the lifespan from 126 to >294 days, diminished pathology, and slowed locomotor dysfunction. K16ApoE enhanced uptake of a fixable biotin tracer by brain endothelial cells in a dose-dependent manner, suggesting that its mechanism involves stimulation of endocytosis. Pharmacokinetic experiments indicated that K16ApoE functions without disrupting the BBB, with minimal effects on overall clearance or uptake by the liver and kidney. K16ApoE has a narrow therapeutic index, with toxicity manifested as lethargy and/or death in mice. To address this, we evaluated variant peptides but found that efficacy and toxicity are associated, suggesting that desired and adverse effects are mechanistically related. Toxicity currently precludes direct clinical application of peptide-mediated delivery in its present form but it remains a useful approach to proof-of-principle studies for biologic therapies to the brain in animal models.


Assuntos
Aminopeptidases/genética , Apolipoproteínas E/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Portadores de Fármacos , Lipofuscinoses Ceroides Neuronais/terapia , Peptídeos/farmacocinética , Serina Proteases/genética , Sequência de Aminoácidos , Aminopeptidases/deficiência , Animais , Apolipoproteínas E/química , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Modelos Animais de Doenças , Endocitose , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Terapia de Reposição de Enzimas/métodos , Regulação da Expressão Gênica , Humanos , Lactente , Injeções Intravenosas , Camundongos , Lipofuscinoses Ceroides Neuronais/enzimologia , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Peptídeos/química , Serina Proteases/deficiência , Análise de Sobrevida , Resultado do Tratamento , Tripeptidil-Peptidase 1
5.
Cell ; 158(6): 1335-1347, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25201528

RESUMO

The apical dendrites of many neurons contain proximal and distal compartments that receive synaptic inputs from different brain regions. These compartments also contain distinct complements of ion channels that enable the differential processing of their respective synaptic inputs, making them functionally distinct. At present, the molecular mechanisms that specify dendritic compartments are not well understood. Here, we report that the extracellular matrix protein Reelin, acting through its downstream, intracellular Dab1 and Src family tyrosine kinase signaling cascade, is essential for establishing and maintaining the molecular identity of the distal dendritic compartment of cortical pyramidal neurons. We find that Reelin signaling is required for the striking enrichment of HCN1 and GIRK1 channels in the distal tuft dendrites of both hippocampal CA1 and neocortical layer 5 pyramidal neurons, where the channels actively filter inputs targeted to these dendritic domains.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Dendritos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Serina Endopeptidases/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Canais de Potássio/metabolismo , Proteína Reelina , Serina Endopeptidases/genética , Transdução de Sinais , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...