Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Precis Clin Med ; 7(1): pbae004, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516531

RESUMO

Owing to its constant exposure to the external environment and various stimuli, skin ranks among the organs most vulnerable to manifestations of aging. Preventing and delaying skin aging has become one of the prominent research subjects in recent years. Mesenchymal stem cells (MSCs) are multipotent stem cells derived from mesoderm with high self-renewal ability and multilineage differentiation potential. MSC-derived extracellular vesicles (MSC-EVs) are nanoscale biological vesicles that facilitate intercellular communication and regulate biological behavior. Recent studies have shown that MSC-EVs have potential applications in anti-aging therapy due to their anti-inflammatory, anti-oxidative stress, and wound healing promoting abilities. This review presents the latest progress of MSC-EVs in delaying skin aging. It mainly includes the MSC-EVs promoting the proliferation and migration of keratinocytes and fibroblasts, reducing the expression of matrix metalloproteinases, resisting oxidative stress, and regulating inflammation. We then briefly discuss the recently discovered treatment methods of MSC-EVs in the field of skin anti-aging. Moreover, the advantages and limitations of EV-based treatments are also presented.

2.
Adv Healthc Mater ; 13(10): e2303192, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38011625

RESUMO

Exploring the preparation of multifunctional hydrogels from a bionic perspective is an appealing strategy. Here, a multifunctional hydrogel dressing inspired by the characteristics of porous extracellular matrix produced during Acomys wound healing is prepared. These dressings are printed by digital light processing printing of hydrogels composed of gelatin methacrylate, hyaluronic acid methacrylate, and pretreated platelet-rich plasma (PRP) to shape out triply periodic minimal surface structures, which are freeze-dried for long-term storage. These dressings mimic the porous extracellular matrix of Acomys, while the freeze-drying technique effectively extends the storage duration of PRP viability. Through in vivo and in vitro experiments, the biomimetic dressings developed in this study modulate cell behavior and facilitate wound healing. Consequently, this research offers a novel approach for the advancement of regenerative wound dressings.


Assuntos
Diabetes Mellitus , Plasma Rico em Plaquetas , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Biomimética , Cicatrização , Murinae , Metacrilatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...