Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 6(19): 17053-8, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25198058

RESUMO

One-dimensional anodic titanium oxide nanotube (TONT) arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for electrochemical energy conversion and storage devices. However, the prominent surface recombination due to the large amount surface defects hinders the performance improvement. In this work, the surface states of TONTs were passivated by conformal coating of high-quality Al2O3 onto the tubular structures using atomic layer deposition (ALD). The modified TONT films were subsequently employed as anodes for photoelectrochemical (PEC) water splitting. The photocurrent (0.5 V vs Ag/AgCl) recorded under air mass 1.5 global illumination presented 0.8 times enhancement on the electrode with passivation coating. The reduction of surface recombination rate is responsible for the substantially improved performance, which is proposed to have originated from a decreased interface defect density in combination with a field-effect passivation induced by a negative fixed charge in the Al2O3 shells. These results not only provide a physical insight into the passivation effect, but also can be utilized as a guideline to design other energy conversion devices.

2.
ACS Appl Mater Interfaces ; 6(11): 8001-5, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24848700

RESUMO

The weak adhesion of anodic TiO2 nanotube arrays (TNTAs) to the underlying Ti substrate compromises many promising applications. In this work, a compact oxide layer between TNTAs and Ti substrate is introduced by employing an additional anodization in a fluoride-free electrolyte. The additional anodization results in an about 200 nm thick compact layer near the nanotube bottoms. Scratch test demonstrates that the critical load of TNTAs with the compact oxide layer is a more than threefold increase in comparison with those without the compact layer. Moreover, this facile method can also improve the photoactivity and supercapacitor performances of TNTAs markedly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...