Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(48): 20326-20338, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37955373

RESUMO

Synchronous control of volatile organic compounds (VOCs) and nitrogen oxides (NOx) is of great importance for ozone and PM2.5 pollution control. Balancing VOC oxidation and the NH3-SCR reaction is the key to achieving the simultaneous removal of these two pollutants. In this work, a vertically oriented Mn2Cu1Al1Ox nanosheet is grown in situ on the surface of Cu-SSZ-13 to synthesize a core-shell bifunctional catalyst (Cu-SSZ-13@Mn2Cu1Al1Ox) with multiple active sites. The optimized Cu-SSZ-13@Mn2Cu1Al1Ox catalyst delivered excellent performance for the simultaneous removal of VOCs and NOx with both 100% conversion at 300 °C in the presence of 5% water vapor. Physicochemical characterization and density functional theory (DFT) calculations revealed that Cu-SSZ-13@Mn2Cu1Al1Ox possesses more surface acidity and oxygen vacancies. The charge transfer between the core and shell is the intrinsic reason for the improved activity for both VOC and NOx removal. The molecular orbital theory is used to explain the different adsorption energies due to the different bonding modes between the core-shell and mixed individual catalysts. This work provides a novel strategy for designing efficient catalysts for the simultaneous removal of VOCs and NOx or other multiple pollutants.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Compostos Orgânicos Voláteis , Amônia/química , Óxidos de Nitrogênio/química , Poluentes Atmosféricos/análise , Oxirredução , Catálise
2.
Environ Sci Technol ; 57(49): 20708-20717, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032314

RESUMO

Mn-based catalysts have attracted much attention in the field of the low-temperature NH3 selective catalytic reduction (NH3-SCR) of NO. However, their poor SO2 resistance, low N2 selectivity, and narrow operation window limit the industrial application of Mn-based oxide catalysts. In this work, NiMnFeOx catalysts were prepared by the layered double hydroxide (LDH)-derived oxide method, and the optimized Ni0.5Mn0.5Fe0.5Ox catalyst had the best denitration activity, excellent N2 selectivity, a wider active temperature range (100-250 °C), higher thermal stability, and better H2O and/or SO2 resistance. A transient reaction revealed that Ni0.5Mn0.5Fe0.5Ox inhibited the NH3 + O2 + NOx pathway to generate N2O, which may be the main reason for its improved N2 selectivity. Combining experimental measurements and density functional theory (DFT) calculations, we elucidated at the atomic level that sulfated NiMnFeOx (111) induces the adjustment of the acidity/basicity of up and down spins and the ligand field reconfiguration of the Mn sites, which improves the overall reactivity of NiMnFeOx catalysts. This work provides atomic-level insights into the promotion of NH3-SCR activity by NiMnFeOx composite oxides, which are important for the practical design of future low-temperature SCR technologies.


Assuntos
Amônia , Óxidos , Temperatura , Oxirredução , Catálise
3.
J Hazard Mater ; 439: 129665, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35907283

RESUMO

In the field of nitrogen oxides (NOx) abatement, developing selective catalytic reduction (SCR) catalysts that can operate stably in the practical conditions remains a big challenge because of the complexity and uncertainty of actual flue gas emissions. As water vapor is unavoidable in the actual flue gas, it is indispensable to explore its effect on the performance of SCR catalysts. Many studies have proved that the effects of H2O on de-NOx activity of SCR catalysts were indeed observed during SCR reactions operated under wet conditions. Whether the effect is promotive or inhibitory depends on the reaction conditions, catalyst types and reducing agents used in SCR reaction. This review focuses on the effect of H2O on SCR catalysts and SCR reaction, including promoting effect, inhibiting effect, as well as the effecting mechanism. Besides, various strategies for developing a water-resistant SCR catalyst are also included. We hope that this work can give a more comprehensive insight into the effects of H2O on SCR catalysts and help with the rational design of water-resistant SCR catalysts for further practical application in NOx abatement field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...