Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Virol ; 2(4): 152-9, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24286036

RESUMO

AIM: To probe the organizational structure of the adsorption apparatus of bacteriophage epsilon 15 (E15) using genetic and biochemical methodology METHODS: Hydroxylamine was used to create nonsense mutants of bacteriophage E15. The mutants were then screened for defects in their adsorption apparatus proteins, initially by measuring the concentrations of free tail spike proteins in lysates of cells that had been infected by the phage mutants under non-permissive growth conditions. Phage strains whose infected cell lysates contained above-average levels of free tail spike protein under non-permissive growth conditions were assumed to contain nonsense mutations in genes coding for adsorption apparatus proteins. These mutants were characterized by classical genetic mapping methods as well as automated sequencing of several of their genes. Finally, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography were used to examine the protein compositions of the radioactive particles produced when the various mutants were grown on a non-permissive host cell in the presence of (35)S-methionine and co-purified along with E15wt phage on CsCl block gradients. RESULTS: Our results are consistent with gp4 forming the portal ring structure of E15. In addition, they show that proteins gp15 and gp17 likely comprise the central tube portion of the E15 adsorption apparatus, with gp17 being more distally positioned than gp15 and dependent upon both gp15 and gp16 for its attachment. Finally, our data indicates that tail spike proteins comprised of gp20 can assemble onto nascent virions that contain gp7, gp10, gp4 and packaged DNA, but which lack both gp15 and gp17, thereby forming particles that are of sufficient stability to survive CsCl buoyant density centrifugation. CONCLUSION: The portal ring (gp4) of E15 is bound to tail spikes (gp20) and the tail tube (gp15 and gp17); gp17's attachment requires both gp15 and gp16.

2.
Virology ; 369(2): 234-44, 2007 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17825342

RESUMO

The genome sequence of the Salmonella enterica serovar Anatum-specific, serotype-converting bacteriophage epsilon15 has been completed. The nonredundant genome contains 39,671 bp and 51 putative genes. It most closely resembles the genome of phiV10, an Escherichia coli O157:H7-specific temperate phage, with which it shares 36 related genes. More distant relatives include the Burkholderia cepacia-specific phage, BcepC6B (8 similar genes), the Bordetella bronchiseptica-specific phage, BPP-1 (8 similar genes) and the Photobacterium profundum prophage, P Pphipr1 (6 similar genes). epsilon15 gene identifications based on homologies with known gene families include the terminase small and large subunits, integrase, endolysin, two holins, two DNA methylase enzymes (one adenine-specific and one cytosine-specific) and a RecT-like enzyme. Genes identified experimentally include those coding for the serotype conversion proteins, the tail fiber, the major capsid protein and the major repressor. epsilon15's attP site and the Salmonella attB site with which it interacts during lysogenization have also been determined.


Assuntos
Genoma Viral , Fagos de Salmonella/genética , Salmonella enterica/virologia , Sequência de Aminoácidos , Tipagem de Bacteriófagos , Sequência de Bases , DNA Bacteriano/genética , DNA Viral/genética , Dados de Sequência Molecular , Fagos de Salmonella/classificação , Fagos de Salmonella/fisiologia , Salmonella enterica/classificação , Salmonella enterica/genética , Homologia de Sequência do Ácido Nucleico , Sorotipagem , Especificidade da Espécie , Proteínas Virais/genética , Montagem de Vírus , Integração Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...