Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37242675

RESUMO

Kiadins are in silico designed peptides with a strong similarity to diPGLa-H, a tandem sequence of PGLa-H (KIAKVALKAL) and with single, double or quadruple glycine substitutions. They were found to show high variability in their activity and selectivity against Gram-negative and Gram-positive bacteria, as well as cytotoxicity against host cells, which are influenced by the number and placing of glycine residues along the sequence. The conformational flexibility introduced by these substitutions contributes differently peptide structuring and to their interactions with the model membranes, as observed by molecular dynamics simulations. We relate these results to experimentally determined data on the structure of kiadins and their interactions with liposomes having a phospholipid membrane composition similar to simulation membrane models, as well as to their antibacterial and cytotoxic activities, and also discuss the challenges in interpreting these multiscale experiments and understanding why the presence of glycine residues in the sequence affected the antibacterial potency and toxicity towards host cells in a different manner.

2.
Colloids Surf B Biointerfaces ; 203: 111745, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33853003

RESUMO

One possibility to prevent prosthetic infections is to produce biomaterials resistant to bacterial colonization by anchoring membrane active antimicrobial peptides (AMPs) onto the implant surface. In this perspective, a deeper understanding of the mode of action of the immobilized peptides should improve the development of AMP-inspired infection-resistant biomaterials. The aim of the present study was to characterize the bactericidal mechanism against Staphylococcus epidermidis of the AMP BMAP27(1-18), immobilized on titanium disks and on a model resin support, by applying viability counts, Field Emission Scanning Electron Microscopy (FE-SEM), and a fluorescence microplate assay with a membrane potential-sensitive dye. The cytocompatibility to osteoblast-like MG-63 cells was investigated in monoculture and in co-culture with bacteria. The impact of peptide orientation was explored by using N- and C- anchored analogues. On titanium, the ∼50 % drop in bacteria viability and dramatically affected morphology indicate a contact-killing action exerted by the N- and C-immobilized peptides to the same extent. As further shown by the fluorescence assay with the resin-anchored peptides, the bactericidal effect was mediated by rapid membrane perturbation, similar to free peptides. However, at peptide MBC resin equivalents the C-oriented analogue proved more effective with more than 99 % killing and maximum fluorescence increase, compared to half-maximum fluorescence with more than 90 % killing produced by the N-orientation. Confocal microscopy analyses revealed 4-5 times better MG-63 cell adhesion on peptide-functionalized titanium both in monoculture and in co-culture with bacteria, regardless of peptide orientation, thus stimulating further studies on the effects of the immobilized BMAP27(1-18) on osteoblast cells.


Assuntos
Anti-Infecciosos , Staphylococcus epidermidis , Antibacterianos/farmacologia , Peptídeos , Titânio/farmacologia
3.
Int J Biol Macromol ; 136: 944-950, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229548

RESUMO

Microorganisms often grow in communities called biofilms where cells are imbedded in a complex self-produced biopolymeric matrix composed mainly of polysaccharides, proteins, and DNA. This matrix, together with cell proximity, confers many advantages to these microbial communities, but also constitutes a serious concern when biofilms develop in human tissues or on implanted prostheses. Although polysaccharides are considered the main constituents of the matrices, their specific role needs to be clarified. We have investigated the chemical and morphological properties of the polysaccharide extracted from biofilms produced by the C1576 reference strain of the opportunistic pathogen Burkholderia multivorans, which causes lung infections in cystic fibrosis patients. The aim of the present study is the definition of possible interactions of the polysaccharide and the three-dimensional conformation of its chain within the biofilm matrix. Surface plasmon resonance experiments confirmed the ability of the polysaccharide to bind hydrophobic molecules, due to the presence of rhamnose dimers in its primary structure. In addition, atomic force microscopy studies evidenced an extremely compact three-dimensional structure of the polysaccharide which may form aggregates, suggesting a novel view of its structural role into the biofilm matrix.


Assuntos
Alcanos/química , Biofilmes , Burkholderia/química , Burkholderia/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Configuração de Carboidratos , Dimerização , Ressonância de Plasmônio de Superfície
4.
Small ; 15(17): e1900323, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30941901

RESUMO

Gold nanoparticles (AuNPs) covered with mixtures of immiscible ligands present potentially anisotropic surfaces that can modulate their interactions at complex nano-bio interfaces. Mixed, self-assembled, monolayer (SAM)-protected AuNPs, prepared with incompatible hydrocarbon and fluorocarbon amphiphilic ligands, are used here to probe the molecular basis of surface phase separation and disclose the role of fluorinated ligands on the interaction with lipid model membranes and cells, by integrating in silico and experimental approaches. These results indicate that the presence of fluorinated amphiphilic ligands enhances the membrane binding ability and cellular uptake of gold nanoparticles with respect to those coated only with hydrogenated amphiphilic ligands. For mixed monolayers, computational results suggest that ligand phase separation occurs on the gold surface, and the resulting anisotropy affects the number of contacts and adhesion energies with a membrane bilayer. This reflects in a diverse membrane interaction for NPs with different surface morphologies, as determined by surface plasmon resonance, as well as differential effects on cells, as observed by flow cytometry and confocal microscopy. Overall, limited changes in monolayer features can significantly affect NP surface interfacial properties, which, in turn, affect the interaction of SAM-AuNPs with cellular membranes and subsequent effects on cells.


Assuntos
Flúor/química , Ouro/química , Hidrogênio/química , Nanopartículas Metálicas/química , Adsorção , Anisotropia , Apoptose , Linhagem Celular Tumoral , Membrana Celular/química , Simulação por Computador , Citometria de Fluxo , Humanos , Hidrocarbonetos/química , Ligantes , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , Termodinâmica
5.
PLoS One ; 14(2): e0212447, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30789942

RESUMO

The increasing emergence of multidrug-resistant microorganisms represents one of the greatest challenges in the clinical management of infectious diseases, and requires the development of novel antimicrobial agents. To this aim, we de novo designed a library of Arg-rich ultra-short cationic antimicrobial lipopeptides (USCLs), based on the Arg-X-Trp-Arg-NH2 peptide moiety conjugated with a fatty acid, and investigated their antibacterial potential. USCLs exhibited an excellent antimicrobial activity against clinically pathogenic microorganisms, in particular Gram-positive bacteria, including multidrug resistant strains, with MIC values ranging between 1.56 and 6.25 µg/mL. The capability of the two most active molecules, Lau-RIWR-NH2 and Lau-RRIWRR-NH2, to interact with the bacterial membranes has been predicted by molecular dynamics and verified on liposomes by surface plasmon resonance. Both compounds inhibited the growth of S. aureus even at sub MIC concentrations and induced cell membranes permeabilization by producing visible cell surface alterations leading to a significant decrease in bacterial viability. Interestingly, no cytotoxic effects were evidenced for these lipopeptides up to 50-100 µg/mL in hemolysis assay, in human epidermal model and HaCaT cells, thus highlighting a good cell selectivity. These results, together with the simple composition of USCLs, make them promising lead compounds as new antimicrobials.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Desenho de Fármacos , Anti-Infecciosos/toxicidade , Peptídeos Catiônicos Antimicrobianos/toxicidade , Arginina/química , Resistência Microbiana a Medicamentos , Resistência a Múltiplos Medicamentos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Técnicas In Vitro , Testes de Sensibilidade Microbiana , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Biblioteca de Peptídeos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/ultraestrutura
6.
Biochim Biophys Acta Biomembr ; 1861(3): 651-659, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578771

RESUMO

Antimicrobial peptides (AMPs) are naturally produced, gene encoded molecules with a direct antimicrobial activity against pathogens, often also showing other immune-related properties. Anuran skin secretions are rich in bioactive peptides, including AMPs, and we have reported a novel targeted sequencing approach to identify novel AMPs simultaneously in different frog species, from small quantities of skin tissue. Over a hundred full-length peptides were identified from specimens belonging to five different Ranidae frog species, out of which 29 were novel sequences. Six of these were selected for synthesis and testing against a panel of Gram-negative and Gram-positive bacteria. One peptide, identified in Rana arvalis, proved to be a potent and broad-spectrum antimicrobial, active against ATCC bacterial strains and a multi-drug resistant clinical isolate. CD spectroscopy suggests it has a helical conformation, while surface plasmon resonance (SPR) that it may self-aggregate/oligomerize at the membrane surface. It was found to disrupt the bacterial membrane at sub-MIC, MIC and above-MIC concentrations, as observed by flow cytometry and/or visualized by atomic force microscopy (AFM). Only a limited toxicity was observed towards peripheral blood mononuclear cells (PBMC) with a more pronounced effect observed against the MEC-1 cell line.


Assuntos
Antibacterianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/genética , Membranas/efeitos dos fármacos , Ranidae/genética , Análise de Sequência de DNA/métodos , Sequência de Aminoácidos , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/isolamento & purificação , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Clonagem Molecular/métodos , Biologia Computacional , Bactérias Gram-Negativas/efeitos dos fármacos , Membranas/metabolismo , Testes de Sensibilidade Microbiana , Ranidae/metabolismo , Pele/química , Pele/metabolismo
7.
Biosens Bioelectron ; 100: 298-303, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28942212

RESUMO

One of the main targets in current clinical oncology is the development of a cheap device capable of monitoring in real-time the concentration of a drug in the blood of a patient. This would allow fine-tuning the dosage according to the patient's metabolism, a key condition to reduce side effects. By using surface plasmon resonance and fluorescence spectroscopy we here show that short peptides designed in silico by a recently developed algorithm are capable of binding the anticancer drug irinotecan (CPT-11) with micromolar affinity. Importantly, the recognition takes place in the denaturating solution used in standard therapeutic drug monitoring to detach the drug from the proteins that are present in human plasma, and some of the peptides are capable of distinguishing CPT-11 from its metabolite SN-38. These results suggest that the in silico design of small artificial peptides is now a viable route for designing sensing units, opening a wide range of applications in diagnostic and clinical areas.


Assuntos
Antineoplásicos/metabolismo , Camptotecina/análogos & derivados , Monitoramento de Medicamentos/métodos , Peptídeos/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Sequência de Aminoácidos , Antineoplásicos/sangue , Sítios de Ligação , Camptotecina/sangue , Camptotecina/metabolismo , Humanos , Irinotecano , Modelos Moleculares , Peptídeos/química , Ligação Proteica , Espectrometria de Fluorescência
8.
Eur Biophys J ; 46(8): 749-771, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28865004

RESUMO

Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areas such as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns-typically patched, striped or Janus-like domains-represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology provides nanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation.


Assuntos
Ouro/química , Nanopartículas Metálicas , Nanomedicina/métodos , Ouro/metabolismo , Propriedades de Superfície
9.
Amino Acids ; 48(9): 2253-60, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27270571

RESUMO

Patients with cystic fibrosis require pharmacological treatment against chronic lung infections. The alpha-helical antimicrobial peptides BMAP-27 and BMAP-28 have shown to be highly active in vitro against planktonic and sessile forms of multidrug-resistant Pseudomonas aeruginosa, Staphylococcus aureus, and Stenotrophomonas maltophilia cystic fibrosis strains. To develop small antibacterial peptides for therapeutic use, we tested shortened/modified BMAP fragments, and selected the one with the highest in vitro antibacterial activity and lowest in vivo acute pulmonary toxicity. All the new peptides have shown to roughly maintain their antibacterial activity in vitro. The 1-18 N-terminal fragment of BMAP-27, showing MIC90 of 16 µg/ml against P. aeruginosa isolates and strain-dependent anti-biofilm effects, showed the lowest pulmonary toxicity in mice. However, when tested in a murine model of acute lung infection by P. aeruginosa, BMAP-27(1-18) did not show any curative effect. If exposed to murine broncho-alveolar lavage fluid BMAP-27(1-18) was degraded within 10 min, suggesting it is not stable in pulmonary environment, probably due to murine proteases. Our results indicate that shortened BMAP peptides could represent a starting point for antibacterial drugs, but they also indicate that they need a further optimization for effective in vivo use.


Assuntos
Biofilmes/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Peptídeos , Pneumonia Estafilocócica/tratamento farmacológico , Proteínas , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Animais , Peptídeos Catiônicos Antimicrobianos , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Humanos , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Proteínas/química , Proteínas/farmacologia
10.
RNA Biol ; 12(12): 1289-300, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26512911

RESUMO

We describe here a platform for high-throughput protein expression and interaction analysis aimed at identifying the RNA-interacting domainome. This approach combines the selection of a phage library displaying "filtered" open reading frames with next-generation DNA sequencing. The method was validated using an RNA bait corresponding to the AU-rich element of α-prothymosin, an RNA motif that promotes mRNA stability and translation through its interaction with the RNA-binding protein ELAVL1. With this strategy, we not only confirmed known RNA-binding proteins that specifically interact with the target RNA (such as ELAVL1/HuR and RBM38) but also identified proteins not previously known to be ARE-binding (R3HDM2 and RALY). We propose this technology as a novel approach for studying the RNA-binding proteome.


Assuntos
Elementos Ricos em Adenilato e Uridilato/genética , Fases de Leitura Aberta/genética , Domínios e Motivos de Interação entre Proteínas/genética , Precursores de Proteínas/genética , Proteínas de Ligação a RNA/metabolismo , Timosina/análogos & derivados , Células HEK293 , Humanos , Ligação Proteica , Precursores de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Timosina/genética , Timosina/metabolismo
11.
J Phys Chem B ; 119(41): 12963-9, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26398715

RESUMO

Short peptides offer a cheap alternative to antibodies for developing sensing units in devices for concentration measurement. We here describe a computational procedure that allows designing peptides capable of binding with high affinity a target organic molecule in aqueous or nonstandard solvent environments. The algorithm is based on a stochastic search in the space of the possible sequences of the peptide, and exploits finite temperature molecular dynamics simulations in explicit solvent to check if a proposed mutation improves the binding affinity or not. The procedure automatically produces peptides which form thermally stable complexes with the target. The estimated binding free energy reaches the 13 kcal/mol for Irinotecan anticancer drug, the target considered in this work. These peptides are by construction solvent specific; namely, they recognize the target only in the solvent in which they have been designed. This feature of the algorithm calls for applications in devices in which the peptide-based sensor is required to work in denaturants or under extreme conditions of pressure and temperature.


Assuntos
Simulação de Dinâmica Molecular , Compostos Orgânicos/química , Peptídeos/química , Solventes/química , Algoritmos , Sequência de Aminoácidos , Termodinâmica
12.
J Med Chem ; 58(3): 1195-204, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25525837

RESUMO

Bac7 is a proline-rich antimicrobial peptide, selective for Gram-negative bacteria, which acts intracellularly after membrane translocation. Progressively shortened fragments of Bac7 allowed determining the minimal sequence required for entry and antimicrobial activity as a 16-residue, N-terminal fragment, while further shortening led to a marked decrease in both functions. Furthermore, two N-terminal arginine residues were required for efficient translocation and activity. Analogues in which these residues were omitted, or where the side chain steric or physicochemical characteristics were systematically altered, were tested on different Escherichia coli strains, including a mutant with a destabilized outer membrane and one lacking the relevant SbmA membrane transport protein. H-bonding capacity, stereochemistry, and charge, in that order, played a determining role for efficient transit through both the outer and cytoplasmic membranes. Our studies allowed building a more detailed model for the mode-of-action of Bac7, and confirming its potential as an anti-infective agent, also suggesting it may be a vehicle for internalization of other antibiotic cargo.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Estrutura Molecular , Método de Monte Carlo , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Relação Estrutura-Atividade
13.
Blood ; 123(22): 3478-87, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24642748

RESUMO

A single-chain fragment variable (scFv) recognizing ß2-glycoprotein 1 (ß2GPI) from humans and other species was isolated from a human phage display library and engineered to contain an IgG1 hinge-CH2-CH3 domain. The scFv-Fc directed against ß2GPI domain I-induced thrombosis and fetal loss, thus mimicking the effect of antibodies from patients with antiphospholipid syndrome (APS). Complement is involved in the biological effect of anti-ß2GPI scFv-Fc, as demonstrated by its ability to promote in vitro and in vivo complement deposition and the failure to induce vascular thrombosis in C6-deficient rats and fetal loss in C5-depleted mice. A critical role for complement was also supported by the inability of the CH2-deleted scFv-Fc to cause vessel occlusion and pregnancy failure. This antibody prevented the pathological effects of anti-ß2GPI antibodies from APS patients and displaced ß2GPI-bound patient antibodies. The CH2-deleted antibody represents an innovative approach potentially useful to treat APS patients refractory to standard therapy.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Síndrome Antifosfolipídica/tratamento farmacológico , Síndrome Antifosfolipídica/imunologia , Autoantígenos/imunologia , Proteínas do Sistema Complemento/imunologia , beta 2-Glicoproteína I/imunologia , Aborto Espontâneo/imunologia , Animais , Anticorpos Monoclonais/genética , Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/imunologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoglobulina G/imunologia , Masculino , Camundongos , Ligação Proteica/imunologia , Ratos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/uso terapêutico , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/isolamento & purificação , Anticorpos de Cadeia Única/uso terapêutico , Trombose/imunologia , Trofoblastos , beta 2-Glicoproteína I/metabolismo
14.
Biochem J ; 457(2): 263-75, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24117320

RESUMO

LL-37 is a multifunctional component of innate immunity, with a membrane-directed antimicrobial activity and receptor-mediated pleiotropic effects on host cells. Sequence variations in its primate orthologues suggest that two types of functional features have evolved; human LL-37-like peptides form amphipathic helical structures and self-assemble under physiological conditions, whereas rhesus RL-37-like peptides only adopt this structure in the presence of bacterial membranes. The first type of peptide has a lower and more medium-sensitive antimicrobial activity than the second type, but an increased capacity to stimulate host cells. Oligomerization strongly affects the mode of interaction with biological membranes and, consequently, both cytotoxicity and receptor-mediated activities. In the present study we explored the effects of LL-37 self-association by using obligate disulfide-linked dimers with either parallel or antiparallel orientations. These had an increased propensity to form stacked helices in bulk solution and when in contact with either anionic or neutral model membranes. The antimicrobial activity against Gram-positive or Gram-negative bacteria, as well as the cytotoxic effects on host cells, strongly depended on the type of dimerization. To investigate the extent of native oligomerization we replaced Phe5 with the photoactive residue Bpa (p-benzoyl-L-phenylalanine), which, upon UV irradiation, enabled covalent cross-linking and allowed us to assess the extent of oligomerization in both physiological solution and in model membranes.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Bovinos , Galinhas , Eritrócitos/metabolismo , Humanos , Lipossomos/metabolismo , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ovinos , Células U937 , Catelicidinas
15.
Biochim Biophys Acta ; 1828(3): 1004-12, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23196344

RESUMO

A challenge when designing membrane-active peptide antibiotics with therapeutic potential is how to ensure a useful antibacterial activity whilst avoiding unacceptable cytotoxicity for host cells. Understanding their mode of interaction with membranes and the reasons underlying their ability to distinguish between bacterial and eukaryotic cytoplasmic cells is crucial for any rational attempt to improve this selectivity. We have approached this problem by analysing natural helical antimicrobial peptides of anuran origin, using a structure-activity database to determine an antimicrobial selectivity index (SI) relating the minimal inhibitory concentration against Escherichia coli to the haemolytic activity (SI=HC(50)/MIC). A parameter that correlated strongly with SI, derived from the lengthwise asymmetry of the peptides' hydrophobicity (sequence moment), was then used in the "Designer" algorithm to propose novel, highly selective peptides. Amongst these are the 'adepantins', peptides rich in glycines and lysines that are highly selective for Gram-negative bacteria, have an exceptionally low haemolytic activity, and are less than 50% homologous to any other natural or synthetic antimicrobial peptide. In particular, they showed a very high SI for E. coli (up to 400) whilst maintaining an antimicrobial activity in the 0.5-4µM range. Experiments with monomeric, dimeric and fluorescently labelled versions of the adepantins, using different bacterial strains, host cells and model membrane systems provided insight into their mechanism of action.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Animais , Anuros , Sequência de Bases , Dicroísmo Circular , Dimerização , Relação Dose-Resposta a Droga , Desenho de Fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Glicina/química , Humanos , Lipossomos/química , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Peptídeos/química , Relação Estrutura-Atividade , Propriedades de Superfície , Fatores de Tempo
16.
J Pept Sci ; 18(2): 105-13, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22083804

RESUMO

The yeast-like algae of the genus Prototheca are ubiquitous saprophytes causing infections in immunocompromised patients and granulomatous mastitis in cattle. Few available therapies and the rapid spread of resistant strains worldwide support the need for novel drugs against protothecosis. Host defence antimicrobial peptides inactivate a wide array of pathogens and are a rich source of leads, with the advantage of being largely unaffected by microbial resistance mechanisms. Three structurally diverse bovine peptides [BMAP-28, Bac5 and lingual antimicrobial peptide (LAP)] have thus been tested for their capacity to inactivate Prototheca spp. In minimum inhibitory concentration (MIC) assays, they were all effective in the micromolar range against clinical mastitis isolates as well as a Prototheca wickerhamii reference strain. BMAP-28 sterilized Prototheca cultures within 30-60 min at its MIC, induced cell permeabilization with near 100% release of cellular adenosine triphosphate and resulted in extensive surface blebbing and release of intracellular material as observed by scanning electron microscopy. Bac5 and LAP inactivated Prototheca following 3-6 h incubation at fourfold their MIC and did not result in detectable surface damage despite 70-90% killing, suggesting they act via non-lytic mechanisms. In circular dichroism studies, the conformation of BMAP-28, but not that of Bac5 or LAP, was affected by interaction with liposomes mimicking algal membranes. Our results indicate that BMAP-28, Bac5 and LAP kill Prototheca with distinct potencies, killing kinetics, and modes of action and may be appropriate for protothecal mastitis treatment. In addition, the ability of Bac5 and LAP to act via non-lytic mechanisms may be exploited for the development of target-selective drugs.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas Granulares de Eosinófilos/farmacologia , Proteínas/farmacologia , Prototheca/efeitos dos fármacos , beta-Defensinas/farmacologia , Sequência de Aminoácidos , Animais , Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Bovinos , Membrana Celular/efeitos dos fármacos , Enterobacteriaceae/efeitos dos fármacos , Proteínas Granulares de Eosinófilos/síntese química , Proteínas Granulares de Eosinófilos/química , Feminino , Mastite Bovina/microbiologia , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Permeabilidade , Estrutura Secundária de Proteína , Proteínas/síntese química , Proteínas/química , Prototheca/isolamento & purificação , Prototheca/ultraestrutura , Staphylococcus/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , beta-Defensinas/síntese química , beta-Defensinas/química
17.
FEBS J ; 279(5): 724-36, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22188679

RESUMO

The problem of multidrug resistance requires the efficient and accurate identification of new classes of antimicrobial agents. Endogenous antimicrobial peptides produced by most organisms are a promising source of such molecules. We have exploited the high conservation of signal sequences in teleost and anuran antimicrobial peptides to search cDNA (expressed sequence tag) databases for likely candidates. Subject sequences were then analysed for the presence of potential antimicrobial peptides based on physicochemical properties (amphipathic helical structure, cationicity) and use of the D-descriptor model to predict the therapeutic index (relation between the minimum inhibitory concentration and the concentration giving 50% haemolysis). This analysis also suggested mutations to probe the role of the primary structure in determining potency and selectivity. Selected sequences were chemically synthesized and the antimicrobial activity of the peptides was confirmed. In particular, a short (21-residue) sequence, likely of sticklefish origin, showed potent activity and it was possible to tune the spectrum of action and/or selectivity by combining three directed mutations. Membrane permeabilization studies on both bacterial and host cells indicate that the mode of action was prevalently membranolytic. This method opens up the possibility for more effective searching of the vast and continuously growing expressed sequence tag databases for novel antimicrobial peptides, which are likely abundant, and the efficient identification of the most promising candidates among them.


Assuntos
Anti-Infecciosos/farmacologia , Anuros/metabolismo , Bactérias/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Etiquetas de Sequências Expressas , Peixes/metabolismo , Fragmentos de Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Sequência Conservada , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...