Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 19622, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380004

RESUMO

Urinary tract infections (UTIs) are common and frequently precipitate delirium-like states. Advanced age coincident with the postmenopausal period is a risk factor for delirium following UTIs. We previously demonstrated a pathological role for interleukin-6 (IL-6) in mediating delirium-like phenotypes in a murine model of UTI. Estrogen has been implicated in reducing peripheral IL-6 expression, but it is unknown whether the increased susceptibility of postmenopausal females to developing delirium concomitant with UTIs reflects diminished effects of circulating estrogen. Here, we tested this hypothesis in a mouse model of UTI. Female C57BL/6J mice were oophorectomized, UTIs induced by transurethral inoculation of E. coli, and treated with 17ß-estradiol. Delirium-like behaviors were evaluated prior to and following UTI and 17ß-estradiol treatment. Compared to controls, mice treated with 17ß-estradiol had less neuronal injury, improved delirium-like behaviors, and less plasma and frontal cortex IL-6. In vitro studies further showed that 17ß-estradiol may also directly mediate neuronal protection, suggesting pleiotropic mechanisms of 17ß-estradiol-mediated neuroprotection. In summary, we demonstrate a beneficial role for 17ß-estradiol in ameliorating acute UTI-induced structural and functional delirium-like phenotypes. These findings provide pre-clinical justification for 17ß-estradiol as a therapeutic target to ameliorate delirium following UTI.


Assuntos
Delírio , Infecções Urinárias , Camundongos , Feminino , Animais , Escherichia coli , Modelos Animais de Doenças , Interleucina-6 , Camundongos Endogâmicos C57BL , Estradiol/farmacologia , Infecções Urinárias/tratamento farmacológico , Estrogênios/farmacologia , Fenótipo , Delírio/tratamento farmacológico
2.
Front Med (Lausanne) ; 9: 987202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405620

RESUMO

Prone positioning is an established treatment for severe acute lung injury conditions. Neuronal dysfunction frequently occurs with mechanical ventilation-induced acute lung injury (VILI) and clinically manifests as delirium. We previously reported a pathological role for systemic interleukin 6 (IL-6) in mediating neuronal injury. However, currently no studies have investigated the relationship between prone or supine positioning and IL-6 mediated neuronal dysfunction. Here, we hypothesize that prone positioning mitigates neuronal injury, via decreased IL-6, in a model of VILI. VILI was induced by subjecting C57BL/6J mice to high tidal volume (35 cc/kg) mechanical ventilation. Neuronal injury markers [cleaved caspase-3 (CC3), c-fos, heat shock protein 90 (Hsp90)] and inflammatory cytokines (IL-6, IL-1ß, TNF-α) were measured in the frontal cortex and hippocampus. We found statistically significantly less neuronal injury (CC3, c-Fos, Hsp90) and inflammatory cytokines (IL-6, IL-1ß, TNF-α) in the frontal cortex and hippocampus with prone compared to supine positioning (p < 0.001) despite no significant group differences in oxygen saturation or inflammatory infiltrates in the bronchoalveolar fluid (p > 0.05). Although there were no group differences in plasma IL-6 concentrations, there was significantly less cortical and hippocampal IL-6 in the prone position (p < 0.0001), indicating supine positioning may enhance brain susceptibility to systemic IL-6 during VILI via the IL-6 trans-signaling pathway. These findings call for future clinical studies to assess the relationship between prone positioning and delirium and for investigations into novel diagnostic or therapeutic paradigms to mitigate delirium by reducing expression of systemic and cerebral IL-6.

3.
Crit Care ; 26(1): 274, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100846

RESUMO

Acute neuropsychiatric impairments occur in over 70% of patients with acute lung injury. Mechanical ventilation is a well-known precipitant of acute lung injury and is strongly associated with the development of acute delirium and anxiety phenotypes. In prior studies, we demonstrated that IL-6 mediates neuropathological changes in the frontal cortex and hippocampus of animals with mechanical ventilation-induced brain injury; however, the effect of systemic IL-6 inhibition on structural and functional acute neuropsychiatric phenotypes is not known. We hypothesized that a murine model of mechanical ventilation-induced acute lung injury (VILI) would induce neural injury to the amygdala and hippocampus, brain regions that are implicated in diverse neuropsychiatric conditions, and corresponding delirium- and anxiety-like functional impairments. Furthermore, we hypothesized that these structural and functional changes would reverse with systemic IL-6 inhibition. VILI was induced using high tidal volume (35 cc/kg) mechanical ventilation. Cleaved caspase-3 (CC3) expression was quantified as a neural injury marker and found to be significantly increased in the VILI group compared to spontaneously breathing or anesthetized and mechanically ventilated mice with 10 cc/kg tidal volume. VILI mice treated with systemic IL-6 inhibition had significantly reduced amygdalar and hippocampal CC3 expression compared to saline-treated animals and demonstrated amelioration in acute neuropsychiatric behaviors in open field, elevated plus maze, and Y-maze tests. Overall, these data provide evidence of a pathogenic role of systemic IL-6 in mediating structural and functional acute neuropsychiatric symptoms in VILI and provide preclinical justification to assess IL-6 inhibition as a potential intervention to ameliorate acute neuropsychiatric phenotypes following VILI.


Assuntos
Lesão Pulmonar Aguda , Delírio , Lesão Pulmonar Induzida por Ventilação Mecânica , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Delírio/complicações , Modelos Animais de Doenças , Interleucina-6 , Camundongos , Fenótipo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
4.
J Neuroinflammation ; 18(1): 247, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711238

RESUMO

BACKGROUND: Urinary tract infection (UTI) is frequently implicated as a precipitant of delirium, which refers to an acute confusional state that is associated with high mortality, increased length of stay, and long-term cognitive decline. The pathogenesis of delirium is thought to involve cytokine-mediated neuronal dysfunction of the frontal cortex and hippocampus. We hypothesized that systemic IL-6 inhibition would mitigate delirium-like phenotypes in a mouse model of UTI. METHODS: C57/BL6 mice were randomized to either: (1) non-UTI control, (2) UTI, and (3) UTI + anti-IL-6 antibody. UTI was induced by transurethral inoculation of 1 × 108 Escherichia coli. Frontal cortex and hippocampus-mediated behaviors were evaluated using functional testing and corresponding structural changes were evaluated via quantification of neuronal cleaved caspase-3 (CC3) by immunohistochemistry and western blot. IL-6 in the brain and plasma were evaluated using immunohistochemistry, ELISA, and RT-PCR. RESULTS: Compared to non-UTI control mice, mice with UTI demonstrated significantly greater impairments in frontal and hippocampus-mediated behaviors, specifically increased thigmotaxis in Open Field (p < 0.05) and reduced spontaneous alternations in Y-maze (p < 0.01), while treatment of UTI mice with systemic anti-IL-6 fully reversed these functional impairments. These behavioral impairments correlated with frontal and hippocampal neuronal CC3 changes, with significantly increased frontal and hippocampal CC3 in UTI mice compared to non-UTI controls (p < 0.0001), and full reversal of UTI-induced CC3 neuronal changes following treatment with systemic anti-IL-6 antibody (p < 0.0001). Plasma IL-6 was significantly elevated in UTI mice compared to non-UTI controls (p < 0.01) and there were positive and significant correlations between plasma IL-6 and frontal CC3 (r2 = 0.5087/p = 0.0028) and frontal IL-6 and CC3 (r2 = 0.2653, p < 0.0001). CONCLUSIONS: These data provide evidence for a role for IL-6 in mediating delirium-like phenotypes in a mouse model of UTI. These findings provide pre-clinical justification for clinical investigations of IL-6 inhibitors to treat UTI-induced delirium.


Assuntos
Delírio/metabolismo , Modelos Animais de Doenças , Interleucina-6/metabolismo , Fenótipo , Infecções Urinárias/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Delírio/patologia , Feminino , Interleucina-6/antagonistas & inibidores , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções Urinárias/patologia
5.
Anim Cogn ; 6(2): 105-12, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12709845

RESUMO

Techniques traditionally used in developmental research with infants have been widely used with nonhuman primates in the investigation of comparative cognitive abilities. Recently, researchers have shown that human infants and monkeys select the larger of two numerosities in a spontaneous forced-choice discrimination task. Here we adopt the same method to assess in a series of experiments spontaneous choice of the larger of two numerosities in a species of amphibian, red-backed salamanders ( Plethodon cinereus). The findings indicate that salamanders "go for more," just like human babies and monkeys. This rudimentary capacity is a type of numerical discrimination that is spontaneously present in this amphibian.


Assuntos
Cognição , Urodelos , Animais , Aprendizagem por Discriminação , Feminino , Masculino , Matemática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...